Solar irradiance variations have a direct effect on the accuracy and repeatability of identifying spectral signatures in the remote sensing field experiments. Solar simulators have been deployed to allow for testing under controlled and reproducible laboratory conditions. However, it is difficult and expensive to make a large-area solar simulation with the appropriate spectral content and spatial uniformity of irradiance. In this study, a hybrid solar simulator has been designed and constructed to provide large-area illumination for remote sensing simulation applications. A design method based on the two-phase genetic algorithm is proposed to improve the performance of the spectral match and spatial uniformity, which no longer relies on the traditional trial-and-error technique. The first phase is used to determine the most appropriate configuration of different lamps in order to represent the solar spectrum. The second phase is to accommodate an optimal placement of the multiple sources to achieve irradiance uniformity. Both numerical simulations and experiments were performed to verify the performances. The results showed that the solar simulator provided a good spectral match and spatial irradiance for simulating the variations in direct normal irradiance at different solar zenith angles. In addition, the modular design makes it possible to adjust irradiance on the target area without altering the spectral distribution. This work demonstrates the development and measurement of a hybrid solar simulator with a realizable optimal configuration of multiple lamps, and offers the prospect of a scalable, large-area solar simulation.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.482003DOI Listing

Publication Analysis

Top Keywords

solar simulator
16
hybrid solar
12
remote sensing
12
solar
10
variations direct
8
large-area solar
8
solar simulation
8
spatial uniformity
8
spectral match
8
match spatial
8

Similar Publications

Computational Study of Chalcogenide-Based Perovskite Solar Cell Using SCAPS-1D Numerical Simulator.

Materials (Basel)

January 2025

Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice 5700, Eastern Cape, South Africa.

Perovskite solar cells (PSCs) are regarded as extremely efficient and have significant potential for upcoming photovoltaic technologies due to their excellent optoelectronic properties. However, a few obstacles, which include the instability and high costs of production of lead-based PSCs, hinder their commercialization. In this study, the performance of a solar cell with a configuration of FTO/CdS/BaZrS/HTL/Ir was optimized by varying the thickness of the perovskite layer, the hole transport layer, the temperature, the electron transport layer (ETL)'s defect density, the absorber defect density, the energy band, and the work function for back contact.

View Article and Find Full Text PDF

Exploring the Impact of Structural Modifications of Phenothiazine-Based Novel Compounds for Organic Solar Cells: DFT Investigations.

Polymers (Basel)

January 2025

Research Laboratory of Asymmetric Synthesis and Molecular Engineering of Materials for Organic Electronic (LR18ES19), Department of Physics, Faculty of Sciences of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia.

This paper explores a novel group of D-π-A configurations that has been specifically created for organic solar cell applications. In these material compounds, the phenothiazine, the furan, and two derivatives of the thienyl-fused IC group act as the donor, the π-conjugated spacer, and the end-group acceptors, respectively. We assess the impact of substituents by introducing bromine atoms at two potential substitution sites on each end-group acceptor (EG1 and EG2).

View Article and Find Full Text PDF

Efficient CO Electrocarboxylation Using Dye-Sensitized Photovoltaics.

Molecules

December 2024

School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.

This paper presents the solar-driven electrocarboxylation of 2-bromopyridine (2-BP) with CO into high-value-added chemicals 2-picolinic acid (2-PA) using dye-sensitized photovoltaics under simulated sunlight. Using three series-connected photovoltaic modules and an Ag electrode with excellent catalytic performance, a Faraday efficiency () of 33.3% is obtained for 2-PA under mild conditions.

View Article and Find Full Text PDF

Radiative Warming Glass for High-Latitude Cold Regions.

Adv Sci (Weinh)

January 2025

Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China.

Traditional window glazing, with inherently adverse energy-efficient optical properties, leads to colossal energy losses. Energy-saving glass requires a customized optical design for different climate zones. Compared with the widely researched radiative cooling technology which is preferable to be used in low-altitude hot regions; conversely in high-latitude cold regions, high solar transmittance (T) and low mid-infrared thermal emissivity (ε) are the key characteristics of high-performance radiative warming window glass, while the current low-emissivity (low-e) glass is far from ideal.

View Article and Find Full Text PDF

Catalytic Hydrolysis of Perfluorinated Compounds in a Yolk-Shell Micro-Reactor.

Adv Sci (Weinh)

January 2025

Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China.

Perfluorinated compounds (PFCs) are emerging environmental pollutants characterized by their extreme stability and resistance to degradation. Among them, tetrafluoromethane (CF) is the simplest and most abundant PFC in the atmosphere. However, the highest C─F bond energy and its highly symmetrical structure make it particularly challenging to decompose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!