AI Article Synopsis

  • * Traditional SiN-based waveguides have been limited by center-symmetric light pumping, which has prevented effective utilization of nonlinearity, but this research addresses that challenge.
  • * Through numerical simulations, the researchers demonstrated that by intentionally offsetting the spatial position during excitation, they were able to improve signal-to-noise ratio (SNR) significantly and achieve a broader, flatter bandwidth.

Article Abstract

We propose a method of supercontinuum light generation enhanced by multimode excitation in a precisely dispersion-engineered deuterated SiN (SiN:D) waveguide. Although a regularly designed SiN-based nonlinear optical waveguide exhibits anomalous dispersion with the fundamental and first-order multimode operation, the center-symmetric light pumping at the input edge has so far inhibited the full potential of the nonlinearity of SiN-based materials. On the basis of numerical analysis and simulation for the SiN:D waveguide, we intentionally applied spatial position offsets to excite the fundamental and higher-order modes to realize bandwidth broadening with flatness. Using this method, we achieved an SNR improvement of up to 18 dB at a wavelength of 0.6 µm with an offset of about 1 µm in the Y-axis direction and found that the contribution was related to the presence of dispersive waves due to the excitation of TE, and TE modes.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.478481DOI Listing

Publication Analysis

Top Keywords

multimode excitation
8
sind waveguide
8
spatially resolved
4
resolved multimode
4
excitation smooth
4
smooth supercontinuum
4
supercontinuum generation
4
generation sin
4
waveguide
4
sin waveguide
4

Similar Publications

Superior Multimodal Luminescence in a Stable Single-Host Nanomaterial with Large-Scale Synthesis for High-Level Anti-Counterfeiting and Encryption.

Adv Sci (Weinh)

January 2025

Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China.

Multimode luminescent materials exhibit tunable photon emissions under different excitation or stimuli channels, endowing them high encoding capacity and confidentiality for anti-counterfeiting and encryption. Achieving multimode luminescence into a stable single material presents a promising but remains a challenge. Here, the downshifting/upconversion emissions, color-tuning persistent luminescence (PersL), temperature-dependent multi-color emissions, and hydrochromism are integrated into Er ions doped CsNaYbCl nanocrystals (NCs) by leveraging shallow defect levels and directed energy migration.

View Article and Find Full Text PDF

Interference of surface plasmons has been widely utilized in optical metrology for applications such as high-precision sensing. In this paper, we introduce a surface plasmon interferometer with the potential to be arranged in arrays for parallel multiplexing applications. The interferometer features two grating couplers that excite surface plasmon polariton (SPP) waves traveling along a gold-air interface before converging at a gold nanoslit where they interfere.

View Article and Find Full Text PDF

Background: The rapid and sensitive detection of nitrite is important to human health protection due to its carcinogenic and teratogenic risks with excessive intake. The Griess assay is widely applied for the design of nitrite detection system. However, its relatively slow reaction kinetics and sole colorimetry mode might limit it's the sensitivity and practical application.

View Article and Find Full Text PDF

Research on multifunctional luminous materials has garnered a lot of interest in the fields of optical sensing, biological imaging, white light-emitting diodes illumination, etc. A novel multifunctional phosphor of Pr-doped BiMoO (BMO: Pr), created via the solid-state method, was investigated in this work. X-ray diffraction, scanning electron microscopy, diffuse reflectance spectroscopy, photoluminescence spectra, and fluorescence decay curves were employed to analyze the produced phosphors.

View Article and Find Full Text PDF

A new high-sensitivity, low-cost, Surface Enhanced Raman Spectroscopy (SERS) sensor allows for the rapid multiplex detection of foodborne pathogens in raw poultry. Self-assembled microspheres are used to pattern a hexagonal close-packed array of nanoantennas onto a side-polished multimode fiber core. Each microsphere focuses UV radiation to a photonic nanojet within a layer of photoresist on the fiber which allows the nanoantenna geometry to be controlled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!