Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Due to the widespread applications of high-dimensional representations in many fields, the three-dimension (3D) display technique is increasingly being used for commercial purpose in a holographic-like and immersive demonstration. However, the visual discomfort and fatigue of 3D head mounts demonstrate the limits of usage in the sphere of marketing. The compressive light field (CLF) display is capable of providing binocular and motion parallaxes by stacking multiple liquid crystal screens without any extra accessories. It leverages optical viewpoint fusion to bring an immersive and visual-pleasing experience for viewers. Unfortunately, its practical application has been limited by processing complexity and reconstruction performance. In this paper, we propose a dual-guided learning-based factorization on polarization-based CLF display with depth-assisted calibration (DAC). This substantially improves the visual performance of factorization in real-time processing. In detail, we first take advantage of a dual-guided network structure under the constraints of reconstructed and viewing images. Additionally, by utilizing the proposed DAC, we distribute each pixel on displayed screens following the real depth. Furthermore, the subjective performance is increased by using a Gauss-distribution-based weighting (GDBW) toward the concentration of the observer's angular position. Experimental results illustrate the improved performance in qualitative and quantitative aspects over other competitive methods. A CLF prototype is assembled to verify the practicality of our factorization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.469643 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!