Understanding nutrient utilization and partitioning is essential for advancing the efficiency of dairy cattle. Our objective was to determine if dairy cows exposed to a 24-h fasting period differ in heat production (HP) and macronutrient oxidation at different stages of lactation. Twelve primiparous, lactating German Holstein dairy cows were used in a longitudinal study design spanning from 2013 to 2014. Dairy cows were housed in respiration chambers during 3 stages of the lactation cycle: early (mean ± SD; 28.8 ± 6.42 d), mid- (89.4 ± 4.52 d), and late (293 ± 7.76 d) lactation. Individual CO, O, and CH gas exchanges were measured every 6 min for two 24-h periods, an ad libitum period and fasting period (RES). Blood was sampled at the start and end of the RES period. Gas measurements were used to calculate HP, net carbohydrate oxidation (COX), and net fat oxidation (FOX). Measurements were corrected with metabolic BW (kg of BW; cBW). The RES period for each stage of lactation was further subdivided into the start (RES) and end (RES) by averaging the first and last 2 h of the RES period. The net change was calculated as RES - RES. All energy variables differed among lactation stage within the RES period except for HP/cBW. As expected, COX, COX/cBW, COX/HP, HP, and HP/cBW, were greater at the RES compared with RES, whereas FOX, FOX/cBW, and FOX/HP were greater at the RES except for FOX and FOX/cBW during mid lactation, which was only a tendency for a difference. The net change for COX, COX/cBW, HP, HP/cBW, and FOX/cBW did not differ among stages of lactation. Despite detecting a tendency for a difference among stage of lactation for FOX, pairwise analysis revealed no differences. Plasma triglyceride, urea, and nonesterified fatty acid concentrations were greater at RES than RES. The net change for plasma glucose, urea, β-hydroxybutyrate, and nonesterified fatty acid concentrations were greater in early than late lactation. Our results demonstrate that despite differences in absolute measurements of energy variables and plasma metabolites, the change in whole-body macronutrient oxidation and HP as cows' transition from a fed-like state to a starvation-like state during a 24-h fasting period is consistent throughout lactation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2022-22330 | DOI Listing |
Curr Microbiol
January 2025
Department of Clinical Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Bovine mastitis is the most widespread disease that causes financial loss in the dairy industry. Staphylococcus aureus is a well-researched multidrug-resistant opportunistic bacterium that is frequently linked to subclinical mastitis and causes significant economic losses. A further problem in the management of S.
View Article and Find Full Text PDFRes Vet Sci
December 2024
Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular (IB-IABiMo), UEDD INTA-CONICET, Hurlingham, Buenos Aires, Argentina; CONICET, Argentina. Electronic address:
Bovine tuberculosis (bTB), a global zoonotic disease, causes negative effects on human and animal health. PhoP protein is a key regulator of pathogenic phenotypes in members of the Mycobacterium tuberculosis complex, which includes the causative agent of bTB. Despite extensive research on this protein focused in deciphering its regulatory role, little was explored about it as a diagnostic antigen.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Agriculture, Women's University in Africa, 549 Arcturus Road, Harare, Zimbabwe.
The objective of the study was to determine the efficacy of white wormwood on helminthes in beef cattle production. Water extracts of white wormwood of different levels of phytotoxicity were used to treat female adult H. contortus over 8 h under controlled laboratory conditions.
View Article and Find Full Text PDFTrop Anim Health Prod
January 2025
Sub Campus T.T Singh, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
The current study was designed to evaluate the effect of particle size (PS) and inclusion level of wheat straw (WS) obtained from genetically improved wheat on the performance and feeding behavior of Sahiwal cows. Twelve multiparous, mid-lactating Sahiwal cows (DIM 135 ± 25, mean ± SD; 12.8 ± 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!