Sewage treatment mediated by microbial organisms is a promising green trend. However, the complex balance between microbiota stability and highly efficient wastewater treatment requires investigation. This study successfully improved the effectiveness of sewage treatment by resetting the microbial community structure in the activated sludge. Truepera, Methylophaga, unclassified_Fodinicurvataceae, and unclassified_Actinomanarales were the dominant genera, while salinity and NH-N content were identified as the key environmental factors governing the microbial structure. By optimizing the microflora structure driven by environmental factors, the key minor genera were activated and coordinated with the aforementioned genera, thereby promoting wastewater treatment. Finally, the chemical oxygen demand, NH-N, and total phosphorus removal rates were improved to 86.8 ± 1.9%, 82.4 ± 4.1%, and 94.8 ± 3.8%, respectively. It provides a new insight to improve the wastewater treatment through setting microbiota by environmental factor driven.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2023.128785DOI Listing

Publication Analysis

Top Keywords

wastewater treatment
16
balance microbiota
8
sewage treatment
8
environmental factors
8
treatment
6
exploring mechanism
4
mechanism self-consistent
4
self-consistent balance
4
microbiota high
4
high efficiency
4

Similar Publications

Removal of Antibiotics in Breeding Wastewater Tailwater Using Microalgae-Based Process.

Bull Environ Contam Toxicol

January 2025

Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.

Ciprofloxacin (CIP) and oxytetracycline (OTC) are commonly detected antibiotic species in breeding wastewater, and microalgae-based antibiotic treatment technology is an environmentally friendly and cost-effective method for its removal. This study evaluated the effects of CIP and OTC on Scenedesmus sp. in the breeding wastewater tailwater and the removal mechanisms of antibiotics.

View Article and Find Full Text PDF

The widespread application of swine-farming wastewater to soil and water is increasingly contributing to heavy metal contamination, posing significant environmental risks. This study investigated the concentrations of eight heavy metals in swine-farming wastewater following different treatment processes, and assessed their ecological risks in Sichuan Province, China. The findings revealed that zinc, copper and nickel exhibited the highest concentrations, potentially causing heavy or strong contamination levels and leading to heavy or slight ecological risks.

View Article and Find Full Text PDF

The high performance of two-dimensional (2D) channel membranes is generally achieved by preparing ultrathin or forming short channels with less tortuous transport through self-assembly of small flakes, demonstrating potential for highly efficient water desalination and purification, gas and ion separation, and organic solvent waste treatment. Here, we report the construction of vertical channels in graphene oxide (GO) membrane based on a substrate template with asymmetric pores. The membranes achieved water permeance of 2647 L m h bar while still maintaining an ultrahigh rejection rate of 99.

View Article and Find Full Text PDF

Azo dyes constitute 60-70% of commercially used dyes and are complex, carcinogenic, and mutagenic pollutants that negatively impact soil composition, water bodies, flora, and fauna. Conventional azo dye degradation techniques have drawbacks such as high production and maintenance costs, use of hazardous chemicals, membrane clogging, and sludge generation. Constructed Wetland-Microbial Fuel Cells (CW-MFCs) offer a promising sustainable approach for the bio-electrodegradation of azo dyes from textile wastewater.

View Article and Find Full Text PDF

The efficient degradation of SAs is a significant challenge for the treatment of wastewater. To address this, the FeS@BC was prepared by calcining a mixture of pyrite and biomass, and used to activate peroxydisulfate (PDS) to degrade sulfadiazine (SDZ). The effect of carbon sources (wheat straw, rice husk, and corn cob) on catalytic activity of FeS@BC were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), total Fe dissolution and free radical quantification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!