Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bisphenol A (BPA) was widely used in the plastic products and banned in infant food containers in many countries due to the environmental and biological toxicity. As a common substitute of BPA to manufacture products, Bisphenol C (BPC) is frequently detected in human samples like infants and toddlers' urine, indicating infants and young children are at risk of BPC exposure. However, the understanding of effects of BPC exposure on early development is limited. Herein, we evaluated the early developmental toxicity of BPC and studied the underlying mechanism in a zebrafish model. We found BPC exposure leading to liver and intestinal developmental defects in zebrafish, which occurred via disruption of GPER-AKT-mTOR-RPS6 pathway. Specifically, BPC downregulated phosphorylated and total levels of mTOR, which synergistically reduced the phosphorylation of RPS6, suppressing the translation of genes essential for cell proliferation in liver and intestine such as yap1 and tcf4. Collectively, our results not only observed clear toxicity of BPC during liver and intestinal development but also demonstrated the underlying mechanism of BPC-mediated defects via disrupting the GPER-AKT-mTOR-RPS6 pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.138195 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!