Ría of Huelva, located in southwestern Spain, is a highly metal(loid)-contaminated estuary system where sediments are exceeding action limits in an increasing order for Cd, Zn, Pb, Cu, and As. With a predicted sea level rise over the next 50 years, the estuary will be subject to flooding with brackish water or seawater. To evaluate the risk of metal(loid) mobilization under future climate scenarios, different locations along the estuary were sampled at different depths. Samples were flooded with river water, brackish water, and seawater under different short- and long-term laboratory setups. Potential metal(loid) mobilization showed that water quality standards for As, Pb, Zn, Ni, Cu, and Cd could be exceeded upon seawater flooding. However, metal(loid) mobilization was not predictable solely based on sediment loads. The driving factors for cation and anion mobility were identified to be mainly pH under low salinity and competitive desorption under high salinity conditions. Further drivers such as wave movement or labile C input in C-limited systems were found to enhance metal(loid) mobilization. Long-term flooding of intact sediment cores revealed that sea level rise will have different effects on the estuary system depending on duration of flooding. Short-term flooding in the near future will first affect alkaline sediments and enhance currently low cation mobilization, while anion mobilization due to reductive Fe dissolution will remain high. Once acidic sediments further inland are flooded with seawater, highest contaminant mobilization can be expected as high salinity will further enhance already high cation mobilization under acidic pH. Long-term flooding with seawater will neutralize the sediment pH and limit cation mobilization compared to acidic pH. However, the contaminant load stored in the estuary is so high that, extrapolating data obtained, mobilization could last for >1000 years, e.g. for As, Pb, and Al.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.162354 | DOI Listing |
Sci Total Environ
December 2024
Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China. Electronic address:
Iron (Fe) (oxyhydr)oxides and natural organic matter (NOM) are active substances ubiquitously found in sediments. Their coupled transformation plays a crucial role in the fate and release risk of heavy metal(loid)s (HMs) in lake sediments. Therefore, it is essential to systematically obtain relevant knowledge to elucidate their potential mechanism, and whether HMs provide immobilization or mobilization effect in this ternary system.
View Article and Find Full Text PDFSci Rep
December 2024
College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, 400715, China.
A pot experiment was conducted on arsenic (As) and cadmium (Cd) co-contaminated soil to discern the influence of varying proportions of pig manure compost (PM) vis-à-vis chemical fertilizers (NPK) on the mitigation of Cd and As absorption by rice. Our findings illustrated that by increasing the PM proportions from 25 to 100%, it manifested a statistically significant reduction in the mobilized fractions of Cd, accounting for up to 77% reduction in soil CaCl-Cd concentrations. Conversely, the NaHCO-As reactions were contingent on the distinct PM application rates.
View Article and Find Full Text PDFJ Environ Manage
December 2024
INDUROT and Environmental Biogeochemistry & Raw Materials Group, Campus of Mieres, University of Oviedo, 33600, Mieres, Spain.
Here we describe two innovative approaches for remediating sediments contaminated with organotin compounds (OTCs, mainly TBT) and metal(loid)s. The first involves chemical stabilization through amendments with nanoscale zero-valent iron (nZVI), dunite mining waste, and coal tailings, materials that have not been previously studied for OTC remediation. The second focuses on physical soil washing, using grain-size separation and magnetic separation to isolate the most polluted fractions, thereby reducing the volume of contaminated material destined for landfills.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Environmental Science, College of Agriculture, Life Sciences and Environmental Sciences, University of Arizona, Tucson, AZ, USA; Division of Community, Environment & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA. Electronic address:
Per- and polyfluoroalkyl substances (PFAS) are pervasive environmental pollutants with significant impacts on ecosystems and public health. This study aimed to characterize PFAS concentrations in an environmental justice community impacted by active/legacy copper mining, compounded by wildfires and flash floods. Additionally, the study explored the (re)mobilization of PFAS and co-occurrence with metal(loid)s following these events.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, PR China.
Seed germination is one of the critical and sensitive stages of early plant growth, and its process is prevented by cinnamic acid (CA). Silicon (Si) plays a critical role in mitigating abiotic stresses and seed germination in plants, but little is known about its role in seed germination and physiology in CA-stressed cucumber. Here, we conducted experiments in the State Key Laboratory of Aridland Crop Science, Gansu Agricultural University from March to June 2021 to investigate the effects of Si-seed priming on growth, antioxidant capacity, sucrose mobilization and respiratory metabolism during germination under CA stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!