Combinatory in vitro effects of the β2-agonists salbutamol and formoterol in skeletal muscle cells.

Toxicol Lett

Department of Molecular and Cellular Sports Medicine, German Sports University Cologne, Cologne, Germany. Electronic address:

Published: April 2023

β2-agonists are used for the treatment of bronchoconstriction, but also abused in doping. Beside an ergogenic activity β2-agonists may have also anabolic activity. Therefore, we investigated the anabolic activity and associated molecular mechanisms of Salbutamol (SAL) and Formoterol (FOR) alone, as well as in combination in C2C12 myotubes. In differentiated C2C12 cells, dose-dependent effects of SAL and FOR (alone/in combination) on myotube diameter, myosin heavy chain (MHC) protein expression and the mRNA expression of genes involved in hypertrophy were analyzed. β2-adrenoceptor 2 (ADRB2), androgen receptor (AR) and estrogen receptor (ER) inhibitors, as well as dexamethasone (Dexa) were co-incubated with the β2-agonists and myotube diameter was determined. SAL and FOR treatment significantly induced hypertrophy and increased MHC expression and the mRNA expression of Igf1, mTOR, PIk3r1 and AMpKa2. In contrast to an ER inhibitor, the ADRB2 and AR inhibitors, as well as Dexa antagonized FOR and SAL induced hypertrophy. Combined treatment with SAL and FOR resulted in significant additive effects on myotube diameter and MHC expression. Future clinical studies are needed to prove this effect in humans and to evaluate this finding with respect to antidoping regulations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2023.02.007DOI Listing

Publication Analysis

Top Keywords

myotube diameter
12
anabolic activity
8
expression mrna
8
mrna expression
8
inhibitors well
8
induced hypertrophy
8
mhc expression
8
sal
5
expression
5
combinatory vitro
4

Similar Publications

Photobiomodulation and aquatic training reduce TNF-α expression and enhance muscle fiber area in Wistar rats with compensatory hypertrophy.

Lasers Med Sci

January 2025

Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), 235/249 Vergueiro Street, Sao Paulo, SP, 01525000, Brazil.

This study aims to assess the effects of aquatic training (AT) and its combination with photobiomodulation (PBM) on cytokine synthesis and plantar muscle morphology during compensatory hypertrophy (H) in Wistar rats. H was induced by bilateral ablation of synergistic muscles, and PBM using a laser (780 nm). AT involved 60 min sessions, 5 times/week, for 7 and 14 days.

View Article and Find Full Text PDF

CCL5 Induces a Sarcopenic-like Phenotype via the CCR5 Receptor.

Antioxidants (Basel)

January 2025

Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile.

Sarcopenia corresponds to a decrease in muscle mass and strength. CCL5 is a new myokine whose expression, along with the CCR5 receptor, is increased in sarcopenic muscle. Therefore, we evaluated whether CCL5 and CCR5 induce a sarcopenic-like effect on skeletal muscle tissue and cultured muscle cells.

View Article and Find Full Text PDF

Skeletal muscle atrophy, manifested by a reduction in muscle size and quantity, is primarily attributed to excessive protein catabolism. FAM129B, an antioxidant protein, has been previously implicated in muscle growth and development in cattle. Aim of this study is to elucidate the role of FAM129B in muscle atrophy.

View Article and Find Full Text PDF

Introduction/aims: Duchenne muscular dystrophy (DMD) is caused by pathogenic variants in the DMD gene, making muscle fibers susceptible to contraction-induced membrane damage. Given the potential beneficial action of cannabidiol (CBD), we evaluated the in vitro effect of full-spectrum CBD oil on the viability of dystrophic muscle fibers and the in vivo effect on myopathy of the mdx mouse, a DMD model.

Methods: In vitro, dystrophic cells from the mdx mouse were treated with full-spectrum CBD oil and assessed with cell viability and cytotoxic analyses.

View Article and Find Full Text PDF

Sarcopenia is an age-related muscle atrophy syndrome characterized by the loss of muscle strength and mass. Although many agents have been used to treat sarcopenia, there are no successful treatments to date. In this study, we identified Danshensu sodium salt (DSS) as a substantial suppressive agent of muscle atrophy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!