Degradation of paralytic shellfish toxins during flocculation of Alexandrium pacificum by an oxidized modified clay: A laboratory experiment.

Ecotoxicol Environ Saf

Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.

Published: March 2023

Paralytic shellfish toxins (PSTs), produced by Alexandrium pacificum in the marine environment, are a group of potent neurotoxins which specifically block voltage-gated sodium channels in excitable cells. During the toxigenic A. pacificum blooms outbreaks, PSTs can be accumulated through the food chain and finally enter the human body, posing a significant threat to human health and safety. This study experimented with a novel type of oxidized modified clay, potassium peroxymonosulfate modified clay (PMPS-MC), which could remove A. pacificum cells as well as reduce intracellular and extracellular PSTs toxicity rapidly. For the extracellular PSTs, its content decreased to below the detection limit rapidly through oxidative degradation within 15 min of 10 mg/L PMPS-MC treatment. Whereafter, although the residual cells in water column and some viable cells in flocculated sediment continued to secrete toxins, the extracellular PSTs content and toxicity in the PMPS-MC treatment groups remained significantly lower than those in the control group. For the intracellular PSTs, PMPS-MC might induce the transformation of more toxic GTX1&4 to less toxic GTX2&3 and C1&2, resulting in intracellular PSTs toxicity reduced within 15 min. In addition, intracellular PSTs content and toxicity in the PMPS-MC treatment groups were consistently lower than the control group within 48 h, possibly by inhibiting the A. pacificum cells growth. These results will provide a scientific basis for the field application of modified clay to control A. pacificum blooms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2023.114667DOI Listing

Publication Analysis

Top Keywords

modified clay
16
extracellular psts
12
psts content
12
pmps-mc treatment
12
intracellular psts
12
paralytic shellfish
8
shellfish toxins
8
alexandrium pacificum
8
oxidized modified
8
psts
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!