Coliquefying synthetic aliphatic and aromatic polymer wastes using supercritical water has drawn considerable research attention. However, the mechanisms of chemical reactions between different types of polymers are ambiguous. Herein, depolymerization mechanisms for individual polymers and reaction mechanisms for binary polymer mixtures were investigated using molecular dynamics and density functional theory (DFT). The innovative approach showed that the production of oil from individual polymers during HTL was hindered by (1) volatile C-C molecules emitted from aliphatic polymers and (2) polycyclic aromatic hydrocarbons (PAHs) produced from aromatic polymers. Interestingly, synergistic reactions among these byproducts from different polymers could promote oil production during coliquefaction. Specifically, the synergistic radical-related reactions included (1) the ring-opening of PAHs caused by CH molecules emitted from aliphatic polymers and (2) the recombination of PHA branches and short-chain aliphatics. A considerable synergy between aromatic polymers with higher benzene ring contents and aliphatic polymers with lower H/C atomic ratios was observed near the critical temperature of 649 K. This work provides new insights into the synergistic reactions involved in the coliquefaction of synthetic polymers and gives useful guidance for realizing efficient oil production from mixed organic wastes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.131032DOI Listing

Publication Analysis

Top Keywords

synergistic reactions
12
aliphatic polymers
12
polymers
10
reactions involved
8
polymer wastes
8
molecular dynamics
8
individual polymers
8
molecules emitted
8
emitted aliphatic
8
aromatic polymers
8

Similar Publications

Covalent adaptable networks (CANs) offer innovative solutions for the reprocessing and recycling of thermoset polymers. However, achieving a balance between easy reprocessing and creep resistance remains a challenge. This study focuses on designing and synthesizing polyurethane (PU) materials with tailored properties by manipulating the stereochemistry of diamine chain extenders.

View Article and Find Full Text PDF

Objective: This study aims to explore the analgesic effects and safety of periarticular injections of methylene blue (MB) combined with a cocktail formulation following total knee arthroplasty (TKA).

Methods: A total of 70 patients undergoing total knee arthroplasty were selected and divided into two groups based on the cocktail formula used for periarticular infiltration, including the methylene blue group (M group, n = 35) and the control group (C group, n = 35). Both groups underwent spinal anesthesia.

View Article and Find Full Text PDF

Bioinspired artificial antioxidases for efficient redox homeostasis and maxillofacial bone regeneration.

Nat Commun

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China.

Reconstructing large, inflammatory maxillofacial defects using stem cell-based therapy faces challenges from adverse microenvironments, including high levels of reactive oxygen species (ROS), inadequate oxygen, and intensive inflammation. Here, inspired by the reaction mechanisms of intracellular antioxidant defense systems, we propose the de novo design of an artificial antioxidase using Ru-doped layered double hydroxide (Ru-hydroxide) for efficient redox homeostasis and maxillofacial bone regeneration. Our studies demonstrate that Ru-hydroxide consists hydroxyls-synergistic monoatomic Ru centers, which efficiently react with oxygen species and collaborate with hydroxyls for rapid proton and electron transfer, thus exhibiting efficient, broad-spectrum, and robust ROS scavenging performance.

View Article and Find Full Text PDF

Defect engineering can create various vacancy configurations in catalysts by finely tuning the local electronic and geometric structures of the active sites. However, achieving precise control and identification of these defects remains a significant challenge, and the origin of vacancy configurations in catalysts, especially clustered or associated ones, remains largely unknown. Herein, we successfully achieve the controllable fabrication and quantitative identification of triple O-Ti-O vacancy associate (VVV) in nanosized Ni-doped TiO.

View Article and Find Full Text PDF

The photocatalytic nonoxidative coupling of methane (PNOCM) offers a promising route to synthesize valuable C2+ hydrocarbons while minimizing side reactions. Oxide-based photocatalysts have been predominant in this field, but suffering from limited conversion rates, selectivity, and durability due to poor C-C coupling as well as overoxidation of CH4 by lattice oxygen. Here, we introduce an advancement in PNOCM for methane conversion into ethane and propane using GaN, one of the most produced semiconductors, together with trace amounts of metallic cobalt clusters (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!