Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mephedrone, a synthetic derivative of cathinone, is a commonly used psychoactive substance. Our previous study showed that exposure to mephedrone during pegnancy induced antiproliferative and pro-apoptotic effects in hippocampus of mice delivered pups. However, its effects on neural stem/progenitor cells (NS/PC) remain unexplored. The aim of this study is to investigate the effects of mephedrone exposure on the proliferation, differentiation, and apoptosis of rat embryonic NS/PC. NS/PC were isolated from rat fetal ganglionic eminence region at embryonic day 14.5. The effects of mephedrone on cell proliferation, neurosphere formation (colonies of NS/PC), neuronal differentiation, and apoptosis of NS/PC were assessed using MTT, immunocytochemistry, and flow cytometry. Mephedrone at concentrations of 20-640 µM significantly decreased the proliferation of NS/PC, induced cell cycle arrest, and enhanced the percent of apoptotic and necrotic cells. Neurosphere assays revealed a significant reduction in the number and diameter of neurosphere-forming cells. In addition, mephedrone significantly decreased the expressions of DCX and NeuN neuronal markers. Taken together, our results suggeste that exposure to mephedrone decreases the viability and neuronal differentiation of embryonic NS/PC. This study showed that mephedrone exposure during fetal or neonatal life may impair neurogenesis and subsequent brain development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/cjpp-2022-0350 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!