Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Although green (G, 500 to 600 nm) and far-red (FR, 700 to 800 nm) light play important roles in regulating plant growth and development, they are often considered less useful at stimulating photosynthesis than red (R, 600 to 700 nm) and blue (B, 400 to 500 nm) light. Based on this perception, approaches to modifying the transmission of greenhouse glazing materials include (1) conversion of G photons from sunlight into R photons and (2) exclusion of the near-infrared (>700 nm) fraction of sunlight. We evaluated these approaches using simulated scenarios with light-emitting diodes to determine how partial and complete substitution of G with R light and exclusion of FR light affected the growth of lettuce and tomato grown indoors. The substitution of G with R light had little or no effect on fresh and dry mass of tomato. However, with the presence of FR light, fresh and dry mass of lettuce increased by 22-26% as G light was increasingly substituted with R light. In tomato, excluding FR inhibited plant height, leaf area, and dry mass by 60-71%, 10-37%, and 20-44%, respectively. Similarly, in lettuce, excluding FR inhibited plant diameter, leaf length, and dry mass by 15-23%, 23-33%, or 28-48%, respectively. We conclude that the spectral conversion of G-to-R photons can promote plant growth in at least some crop species, such as lettuce, while the exclusion of FR decreases crop growth and yield.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949677 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281996 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!