In this paper, a random forest regression (RFR) rain size characterization method based on a laser ultrasound technique is investigated to predict the grain size of titanium alloy (Ti-6Al-4V). The longitudinal wave velocity of the ultrasound signal and the attenuation coefficient at different frequencies are used as the input and the grain size is used as the output. An RFR algorithm was used to develop a grain size prediction model. Meanwhile, the grain size calculation model based on conventional scattering attenuation was established by calibrating the value in the classical scattering theory using the attenuation coefficients at different frequencies of ultrasonic signals. The results show that the RFR algorithm is feasible for the grain size characterization of titanium alloys.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.479323DOI Listing

Publication Analysis

Top Keywords

grain size
24
size characterization
12
titanium alloy
8
based laser
8
random forest
8
forest regression
8
rfr algorithm
8
grain
6
size
6
characterization ti-6al-4v
4

Similar Publications

Lead (Pb) toxicity impairs the growth, yield, and biochemical traits of rice, making it essential to mitigate Pb stress in soil and restore its growth and production. This study investigated the potential of ascorbic acid-coated quantum dots (AsA-QDs) in alleviating Pb stress in two rice cultivars, Japonica (JP-5) and Indica (Super Basmati), grown in pots under Pb stress (50 mg/kg as lead chloride) with AsA-QD suspensions (50 ppm and 100 ppm) as treatments. The synthesized AsA-QDs were characterized by zeta potential (-14.

View Article and Find Full Text PDF

Focusing on the mechanism of glycinin-soybean lipophilic protein hybrid gels: Effect of ultrasonic, subunit interactions, and formation process analysis.

Ultrason Sonochem

January 2025

Department of Food Engineering, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin 150028, Heilongjiang, China. Electronic address:

Heat facilitates aggregation and gel formation of soybean proteins. Ultrasonic reduces the size of protein aggregates. This study examined the impact of glycinin (11S) subunits on soybean lipophilic proteins (SLPs) gel formation and underlying mechanisms.

View Article and Find Full Text PDF

Ductilization of 2.6-GPa alloys via short-range ordered interfaces and supranano precipitates.

Science

January 2025

Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), Hysitron Applied Research Center in China (HARCC) and Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.

Higher strength and higher ductility are desirable for structural materials. However, ultrastrong alloys inevitably show decreased strain-hardening capacity, limiting their uniform elongation. We present a supranano (<10 nanometers) and short-range ordering design for grain interiors and grain boundary regions, respectively, in fine-grained alloys based on vanadium, cobalt, and nickel, with additions of tungsten, copper, aluminum, and boron.

View Article and Find Full Text PDF

Enhanced Mechanical Properties in Bulk Nanograined Ni with High-Density Fivefold Twins.

Small

January 2025

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.

Fivefold twins are extensively present in nanoparticles and nanowires, enhancing their performance in physical, chemical, and mechanical properties. However, a deep insight into the correlation between mechanical properties and fivefold twins in bulk nanograined materials is lacking due to synthesis difficulties. Here, a bulk fivefold-twinned nanograined Ni is synthesized via electrodeposition.

View Article and Find Full Text PDF

Engineering 0.8BiFeO-0.2BaTiO multiferroics with improved dielectric and magnetic properties samarium doping.

RSC Adv

January 2025

IMMM, Institut des Molécules et Matériaux du Mans Bd Charles Nicolle 72000 Le Mans France.

Samarium (Sm) modification is emerging as a powerful strategy to manipulate the electrical response of 0.8BiFeO-0.2BaTiO (BFBT) multiferroic ceramics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!