We show that quantum detector tomography can be applied to the human visual system to explore human perception of photon number states. In detector tomography, instead of using very hard-to-produce photon number states, the response of a detector to light pulses with known photon statistics of varying intensity is recorded, and a model is fitted to the experimental outcomes, thereby inferring the detector's photon number state response. Generally, light pulses containing a Poisson-distributed number of photons are utilized, which are very easy to produce in the lab. This technique has not been explored to study the human visual system before because it usually requires a very large number of repetitions not suitable for experiments on humans. Yet, in the present study we show that detector tomography is feasible for human experiments. Assuming a simple model for this accuracy, the results of our simulations show that detector tomography is able to reconstruct the model using Bayesian inference with as few as 5000 trials. We then optimize the experimental parameters in order to maximize the probability of showing that the single-photon accuracy is above chance. As such, our study opens the road to study human perception on the quantum level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.477639 | DOI Listing |
Photon-counting computed tomography (PCCT) is superior in providing better CT image contrast than traditional CT technology. However, noticeable ring artifacts are more likely caused by the imperfect functioning of photon-counting detectors. This study proposes an efficient ring artifacts correction approach based on the unique characteristics of unwanted components in multi-domains.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Electrical and Computer Engineering, University of Massachusetts Lowell, Ball Hall, 1 University Ave, Lowell, Massachusetts, 01854, UNITED STATES.
Objective: X-ray photon-counting detectors (PCDs) have recently gained popularity due to their capabilities in energy discrimination power, noise suppression, and resolution refinement. The latest extremity photon-counting computed tomography (PCCT) scanner leverages these advantages for tissue characterization, material decomposition, beam hardening correction, and metal artifact reduction. However, technical challenges such as charge splitting and pulse pileup can distort the energy spectrum and compromise image quality.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Applied Sciences, Indian Institute of Information Technology Allahabad, Deoghat, Jhalwa, Allahabad, 211012, INDIA.
Photoacoustic tomography (PAT) is a non-destructive, non-ionizing, and rapidly expanding hybrid biomedical imaging technique, yet it faces challenges in obtaining clear images due to limited data from detectors or angles. As a result, the methodology suffers from significant streak artifacts and low-quality images. The integration of deep learning (DL), specifically convolutional neural networks (CNNs), has recently demonstrated powerful performance in various fields of PAT.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
January 2025
U.S. Food and Drug Administration, Office of Science and Engineering Labs, Division of Imaging, Diagnostics, and Software Reliability, Silver Spring, Maryland, United States.
Purpose: We evaluate the impact of charge summing correction on a cadmium telluride (CdTe)-based photon-counting detector in breast computed tomography (CT).
Approach: We employ a custom-built laboratory benchtop system using the X-THOR FX30 0.75-mm CdTe detector (Varex Imaging, Salt Lake City, Utah, United States) with a pixel pitch of 0.
J Alzheimers Dis
January 2025
Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia.
Background: The introduction of therapeutics for Alzheimer's disease has led to increased interest in precisely quantifying amyloid-β (Aβ) burden for diagnosis, treatment monitoring, and further clinical research. Recent positron emission tomography (PET) hardware innovations including digital detectors have led to superior resolution and sensitivity, improving quantitative accuracy. However, the effect of PET scanner on Centiloid remains relatively unexplored and is assumed to be minimized by harmonizing PET resolutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!