Hydrophobic organic contaminated polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and CHNS (carbon, hydrogen, nitrogen and sulphur species) are explosively associated with road dust particles. A few organic contaminants are toxic in nature and have an unpleasant effect on human health. The International Agency for Research on Cancer (IARC), the US Department of Health and Human Services (HHS) and the United States-Environmental Protection Agency has considered several PAHs and PCBs as carcinogens for human beings. In the proposed study, the anthropogenic contaminants present in road dust were assessed in six representative diversified sites i.e. industrial, commercial, office, residential, construction and traffic intersection in Delhi NCR, India. Roadside dust samples were gathered in premonsoon, monsoon and postmonsoon seasons and characterized for PAHs, PCBs and CHNS. The concentration of total PAHs (16 Nos) and PCBs (6 Nos) of the selected sites ranged from 0.27 µg/kg to 605.80 µg/kg and 0.01 µg/kg to 41.26 µg/kg, respectively. The Fourier transform infrared spectroscopy-attenuated total reflectance study suggested that the presence of O = C = O, Si-O, carbonyl, acidic or aliphatic esters group were associated with road dust particles. Hydrogen and sulphur concentrations were not detected in the selected road dust samples. Carbon and nitrogen concentrations varied from 2.24% to 16.82% and 0.69% to 14.5%, respectively, seasonally. In the premonsoon season, road dust was distinguishably contaminated as compared to monsoon and postmonsoon season, which might be due to movement of contaminated road dust from adjacent locations. It was perceived that Delhi NCR organic contamination in road dust was much below as compared to other countries. It may be concluded that due to the presence of significant amounts of carbon and nitrogen concentrations in the road dust, to a greater extent, road dust can be fertile and might be advantageous for green belt development to mitigate air pollution. The utilization of road dust will further bring down the burden of landfill sites and may lead towards sustainability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-25762-7 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Faculty of Geography, Lomonosov Moscow State University, 119991, Moscow, Russia.
The content of 39 metals and metalloids (MMs) in submicron road dust (PM fraction) was studied in the traffic zone, residential courtyards with parking lots, and on pedestrian roads in parks in Moscow. The geochemical profiles of PM vary slightly between different types of roads and courtyards but differ significantly from those in parks. In Moscow, compared to other cities worldwide, submicron road dust contains less As, Sb, Mo, Cr, Cd, Sn, Tl, Ca, Rb, La, Y, U, but more Cu, Zn, Co, Fe, Mn, Ti, Zr, Al, V.
View Article and Find Full Text PDFInt J Biometeorol
January 2025
Department of Children Health, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, No.416 of Chengnan East Road, Yuhua District, Changsha, Hunan, 410007, China.
Accumulating evidence has shown that long-term exposure to particulate matter with aerodynamic diameter of less than 2.5 μm (PM2.5) causes Th1/Th2 imbalance and increases the risk of allergic asthma (AA) in children.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Saxon State Office for Environment, Agriculture and Geology, Halsbrückerstr. 31a, Freiberg 09599, Germany.
Historical mining towns face financial challenges with the proposed Soil Monitoring Law of the European Union, which will require the management of soil contamination, since remediating soil in densely populated towns and cities is challenging. We compared the environmental impact of sulfide ore mining in the urban area of Outokumpu in Finland with that of other European sites, focusing on soil contamination. Soil sampling revealed that mine tailings were historically used in road construction.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia.
Human activities have far-reaching impact on natural ecosystems, causing increasing disturbances and disruptions to the delicate balance of the environment. Poor land use planning, urbanization, infrastructure development, and unplanned tourism exacerbate contamination and degradation in tourist destinations, yet the pollution of potentially toxic elements (PTEs) in these environments remains inadequately explored. To address this issue, we investigated the concentrations of acid-digested PTEs in road dust in Abbottabad city (Pakistan) with heavy traffic.
View Article and Find Full Text PDFCurr Biol
December 2024
Marine Core Research Institute (MaCRI), Kochi University, 200 Monobe-otsu, Nankoku, Kochi 783-8502, Japan.
The deep-time development of the Southern Ocean's deep-sea ecosystem remains poorly understood, despite being a key region in global ecological, climatological, and oceanographic systems, where deep water forms and biodiversity is unexpectedly high. Here, we present an ∼500,000-year fossil record of the deep-sea Southern Ocean ecosystem in the subantarctic zone. The results indicate that changes in surface productivity and the resulting food supply to the deep sea, driven by eolian dust input and iron fertilization, along with changes in bottom-water temperature influenced by deep-water circulation, have controlled the deep-sea ecosystem in the Southern Ocean on orbital (10-10 years) timescales following the Mid-Brunhes event (MBE), a major climatic transition ∼430,000 years ago.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!