Glycopolymers against pathogen infection.

Chem Soc Rev

Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.

Published: April 2023

Pathogens including viruses, bacteria, fungi, and parasites continue to shape our lives in profound ways every day. As we have learned to live in parallel with pathogens, we have gained a better understanding of the rules of engagement for how they bind, adhere, and invade host cells. One such mechanism involves the exploitation of host cell surface glycans for attachment/adhesion, one of the first steps of infection. This knowledge has led to the development of glycan-based diagnostics and therapeutics for the treatment and prevention of infection. One class of compounds that has become increasingly important are the glycopolymers. Glycopolymers are macromolecules composed of a synthetic scaffold presenting carbohydrates as side chain motifs. Glycopolymers are particularly attractive because their properties can be tuned by careful choice of the scaffold, carbohydrate/glycan, and overall presentation. In this review, we highlight studies over the past ten years that have examined the role of glycopolymers in pathogen adhesion and host cell infection, biofilm formation and removal, and drug delivery with the aim of examining the direct effects of these macromolecules on pathogen engagement. In addition, we also examine the role of glycopolymers as diagnostics for the detection and monitoring of pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cs00912aDOI Listing

Publication Analysis

Top Keywords

glycopolymers pathogen
8
host cell
8
role glycopolymers
8
glycopolymers
6
infection
4
pathogen infection
4
infection pathogens
4
pathogens including
4
including viruses
4
viruses bacteria
4

Similar Publications

Wall teichoic acids (WTAs) from the major Gram-positive foodborne pathogen Listeria monocytogenes are peptidoglycan-associated glycopolymers decorated by monosaccharides that, while not essential for bacterial growth, are required for bacterial virulence and resistance to antimicrobials. Here we report the structure and function of a bacterial WTAs rhamnosyltransferase, RmlT, strictly required for L. monocytogenes WTAs rhamnosylation.

View Article and Find Full Text PDF

Mucins are key components of innate immune defense and possess remarkable abilities to manage pathogenic microbes while supporting beneficial ones and maintaining microbial homeostasis at mucosal surfaces. Their unique properties have garnered significant interest in developing mucin-inspired materials as novel therapeutic strategies for selectively controlling pathogens without disrupting the overall microbial ecology. However, natural mucin production is challenging to scale, driving the need for simpler materials that reproduce mucin's bioactivity.

View Article and Find Full Text PDF

The two-component system ArlRS is essential for wall teichoic acid glycoswitching in .

mBio

January 2025

Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.

is among the leading causes of hospital-acquired infections. Critical to biology and pathogenesis are the cell wall-anchored glycopolymers wall teichoic acids (WTA). Approximately one-third of isolates decorates WTA with a mixture of α1,4- and β1,4--acetylglucosamine (GlcNAc), which requires the dedicated glycosyltransferases TarM and TarS, respectively.

View Article and Find Full Text PDF

High-dose radiation exposure results in gastrointestinal (GI) acute radiation syndrome identified by the destruction of mucosal layer, intestinal epithelial barrier dysfunction, and aberrant inflammatory responses. In addition, radiation causes gut microbiome dysbiosis characterized by diminished microbial diversity, reduction in the abundance of beneficial commensal bacteria, and the spread of bacterial pathogens that trigger the recruitment of immune cells and the production of pro-inflammatory factors that lead to further GI tissue damage. Currently, there are no FDA-approved countermeasures that can treat radiation-induced GI injury.

View Article and Find Full Text PDF
Article Synopsis
  • Identification of bacterial lectins can help develop new diagnostic tools, but low selectivity in carbohydrate-lectin interactions makes designing specific sensors challenging.
  • Researchers created a glycopolymer-based sensor array that uses a pattern-based method to recognize various lectins with similar carbohydrate preferences.
  • The sensor's ability to change emission profiles when exposed to lectins allows for differentiation between analytes, enabling it to distinguish between different bacterial strains and assess factors like adhesion and antibiotic resistance.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!