Background: Nitric oxide is a chemical agent produced by endothelial cells in a healthy blood vessel, inhibiting the overgrowth of vascular smooth muscle cells and regulating vessel tone. Liposomes are biocompatible and biodegradable drug carriers with a similar structure to cell bilayer phospholipid membrane that can be used as useful nitric oxide carriers in vascular grafts.

Method: Using a custom-designed apparatus, the sheep carotid arteries were decellularized while still maintaining important components of the vascular extracellular matrix (ECM), allowing them to be used as small-diameter vascular grafts. A chemical signal of sodium nitrite was applied to control smooth muscle cells' behavior under static and dynamic cell culture conditions. The thin film hydration approach was used to create nano-liposomes, which were then used as sodium nitrite carriers to control the drug release rate and enhance the amount of drug loaded into the liposomes.

Results: The ratio of 80:20:2 for DPPC: Cholesterol: PEG was determined as the optimum formulation of the liposome structure with high drug encapsulation efficiency (98%) and optimum drug release rate (the drug release rate was 40%, 65%, and 83% after 24, 48, and 72 h, respectively). MTT assay results showed an improvement in endothelial cell proliferation in the presence of nano-liposomal sodium nitrite (LNS) at the concentration of 0.5 μg/mL. Using a suitable concentration of liposomal sodium nitrite (0.5 μg/mL) put onto the constructed scaffold resulted in the controllable development of smooth muscle cells in the experiment. The culture of smooth muscle cells in a pulsatile perfusion bioreactor indicated that in the presence of synthesized liposomal sodium nitrite, the overgrowth of smooth muscle cells was inhibited in dynamic cell culture conditions. The mechanical properties of ECM graft were measured, and a multi-scale model with an accuracy of 83% was proposed to predict mechanical properties successfully.

Conclusion: The liposomal drug-loaded small-diameter vascular graft can prevent the overgrowth of SMCs and the formation of intimal hyperplasia in the graft. Aside from that, the effect of LNS on endothelial has the potential to stimulate endothelial cell proliferation and re-endothelialization.

Download full-text PDF

Source
http://dx.doi.org/10.1111/aor.14512DOI Listing

Publication Analysis

Top Keywords

sodium nitrite
24
smooth muscle
24
muscle cells
16
small-diameter vascular
12
drug release
12
release rate
12
nano-liposomal sodium
8
vascular graft
8
nitric oxide
8
dynamic cell
8

Similar Publications

Lactic acid bacteria (LAB), traditionally consumed as fermented foods, are now being applied to the medical field beyond health-functional food as probiotics. Therefore, it is necessary to continuously discover and evaluate new strains with suitable probiotic characteristics, mainly focusing on safety. In this study, we isolated eight new strains from postmenopausal vaginal fluid using culturomics approaches, an emerging area of interest.

View Article and Find Full Text PDF

Current study evaluates the beneficial role of bio-functionalized zinc ferrite nanoparticles fabricated from an aqueous extract of Decalepis hamiltonii leaves (DHLE.ZnFeO NPs) on sodium nitrite (NaNO) and Diclofenac (DFC) induced oxidative stress in RBCs and Sprague Dawley male rat models. DHLE.

View Article and Find Full Text PDF

Introduction: Sodium nitrite is a potent oxidizer, which may precipitate rapidly lethal methemoglobinemia. Prompt diagnosis and treatment may salvage otherwise fatal cases. It is unclear if emergency departments are prepared for increasing cases.

View Article and Find Full Text PDF

Enrichment of a heterotrophic nitrifying and aerobic denitrifying bacterial consortium: Microbial community succession and nitrogen removal characteristics and mechanisms.

Bioresour Technol

December 2024

Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China. Electronic address:

This study cultivated a bacterial consortium (S60) from landfill leachate that exhibited effective heterotrophic nitrification and aerobic denitrification (HN-AD) properties. Under aerobic conditions, the removal of NH-N reached 100 % when the S60 consortium utilised NH-N either as the sole nitrogen source or in combination with NO-N and NO-N. Optimal HN-AD performance was achieved with sodium acetate as a carbon source and a pH of 7.

View Article and Find Full Text PDF

Background: Diabetes mellitus (DM) is one of the most common metabolic diseases in the world. Studies have shown that nitric oxide (NO) promotes re-epithelialization and stimulates angiogenesis and neovascularization. This study aimed to investigate the effect of exogenous NO on diabetic wound healing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!