Introduction: Toxic epidermal necrolysis (TEN), also known as Steven Johnson syndrome (SJS), is a devastating disease. Patients develop blindness and symblepharon despite multiple reconstructive surgeries. We report a case of SJS/TEN with ocular involvement where treatment with hyperbaric oxygen therapy (HBOT) resulted in a significant improvement in the visual acuity after surgery.

Case Presentation: A woman with SJS/TEN with severe ocular complication (SOC) had limbal stem cell deficiency and symblepharon of the superior and inferior fornix. Pannus grew over her cornea, reducing the vision to counting finger. The symblepharon produced shortening of the fornix, causing entropion. The in-turned eyelid caused her eyelashes to rub against the cornea, causing great damage to the ocular surface. Limbal stem cell deficiency led to the loss of normal corneal morphology and invasion of the pannus onto the central visual axis, resulting in poor vision. She experienced ocular inflammation for 3 months before transfer to our hospital for admission. Ophthalmic examination showed bilateral corneal opacity with conjunctivalization, and inferior and superior fornix shortening. Symblepharon-lysis with amniotic membrane transplantation was attempted but the outcome was poor, with recurrence of superior scaring and symblepharon. She finally underwent major reconstructive surgery with allogeneic limbal stem cell transplantation with her sister as the donor, autologous minor salivary gland transplantation, and oral buccal mucosa flap transplant. HBOT was given daily post-surgery for supporting the grafts and suppressing inflammation. After 17 HBOT sessions and 3 months of autoserum drops, her left eye vision increased from the initial counting finger to 0.4 due to the successful growth of the corneal epithelium from the donor corneal limbal cell line. When a scleral contact lens which vaulted over the corneal limbal area was fitted, her vision improved to 0.8 due to redressal of high order aberration and astigmatism from the cornea scar.

Conclusion: After major reconstruction of the ocular surface with multiple cell type transplants, including limbal stem cells, minor salivary gland acinar cells, and oral mucosa cells, HBOT proved useful in supporting the graft uptake and oxygenation of the donor tissues, enabling fast recovery of the grafts and cell functioning, with eventual return of the working vision of the patient.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938410PMC
http://dx.doi.org/10.1016/j.heliyon.2022.e12590DOI Listing

Publication Analysis

Top Keywords

limbal stem
16
ocular surface
12
stem cell
12
steven johnson
8
johnson syndrome
8
toxic epidermal
8
epidermal necrolysis
8
cell deficiency
8
counting finger
8
minor salivary
8

Similar Publications

Purpose: To investigate different measures for corneal astigmatism in the context of reconstructed corneal astigmatism (recCP) as required to correct the pseudophakic eye, and to derive prediction models to map measured corneal astigmatism to recCP.

Methods: Retrospective single centre study of 509 eyes of 509 cataract patients with monofocal (MX60P) IOL. Corneal power measured with the IOLMaster 700 keratometry (IOLMK), and Galilei G4 keratometry (GK), total corneal power (TCP2), and Alpin's integrated front (CorT) and total corneal power (CorTTP).

View Article and Find Full Text PDF

Purpose: To describe and report the outcomes of allogeneic eccentric superficial anterior lamellar keratoplasty (SALK), a novel surgical technique, in the management of total bilateral limbal stem cell deficiency (LSCD).

Methods: Data were collected retrospectively on all patients with total bilateral LSCD who underwent SALK. Previous surgery, preexisting glaucoma, conjunctivalization, vascularization, lens status, and preoperative best-corrected visual acuity (BCVA) were collected from medical notes.

View Article and Find Full Text PDF

Development of Biomimetic Substrates for Limbal Epithelial Stem Cells Using Collagen-Based Films, Hyaluronic Acid, Immortalized Cells, and Macromolecular Crowding.

Life (Basel)

November 2024

Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 TK33 Galway, Ireland.

Despite the promising potential of cell-based therapies developed using tissue engineering techniques to treat a wide range of diseases, including limbal stem cell deficiency (LSCD), which leads to corneal blindness, their commercialization remains constrained. This is primarily attributable to the limited cell sources, the use of non-standardizable, unscalable, and unsustainable techniques, and the extended manufacturing processes required to produce transplantable tissue-like surrogates. Herein, we present the first demonstration of the potential of a novel approach combining collagen films (CF), hyaluronic acid (HA), human telomerase-immortalized limbal epithelial stem cells (T-LESCs), and macromolecular crowding (MMC) to develop innovative biomimetic substrates for limbal epithelial stem cells (LESCs).

View Article and Find Full Text PDF
Article Synopsis
  • RSPO3 is a specific protein that amplifies the WNT signaling pathway and plays a role in maintaining the function of adult stem cells, particularly limbal epithelial stem cells (LESCs) at the limbus.
  • The study found that only RSPO3 is consistently expressed in the human limbus, where it enhances the proliferation and self-renewal of LESCs in a dose-dependent manner, independent of the traditional WNT/β-catenin signaling pathway.
  • These findings suggest that RSPO3 could be a potential therapeutic target for improving wound healing in corneal injuries and addressing limbal stem cell deficiencies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!