Type I collagen carboxyl-terminal peptide β (β-CTX) increases in osteoporosis. The study aimed to explore the relationship between serum β-CTX and the risk of osteoporosis as well as sarcopenia in Chinese elderly inpatients. Around 228 patients whose age >65 years were recruited in this cross-sectional study. Dual-energy X-ray scanning was used to access skeletal muscle and bone mass. Serum concentration of β-CTX as well as the prevalence of osteoporosis were significantly higher in low skeletal muscle index (SMI) group than that in the normal SMI group ( < 0.05). Serum β-CTX levels negatively correlated with SMI and bone mass ( < 0.05). Total muscle mass, appendicular skeletal muscle mass, SMI, total bone mass, and bone mass at various sites including the limbs, spine, and pelvis decreased significantly, and the prevalence of low SMI increased with the increase of the quartiles of β-CTX. Higher serum β-CTX had an increased risk of low SMI and osteoporosis ( < 0.05). Summarily, with increasing serum β-CTX levels, both muscle and bone mass decreased in Chinese elderly inpatients. Serum β-CTX was positively associated with the risk of not only osteoporosis but also skeletal muscle loss.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938641PMC
http://dx.doi.org/10.1515/med-2023-0642DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
20
serum β-ctx
20
bone mass
20
osteoporosis skeletal
8
muscle loss
8
type collagen
8
collagen carboxyl-terminal
8
carboxyl-terminal peptide
8
cross-sectional study
8
β-ctx
8

Similar Publications

Introduction: The purpose of this study was to evaluate the association between body composition, overall survival, odds of receiving treatment, and patient-reported outcomes (PROs) in individuals living with metastatic non-small-cell lung cancer (mNSCLC).

Methods: This retrospective analysis was conducted in newly diagnosed patients with mNSCLC who had computed-tomography (CT) scans and completed PRO questionnaires close to metastatic diagnosis date. Cox proportional hazard models and logistic regression evaluated overall survival and odds of receiving treatment, respectively.

View Article and Find Full Text PDF

Background And Purpose: Throwing a baseball involves intense exposure of the arm to high speeds and powerful forces, which contributes to an increasing prevalence of arm injuries among athletes. Traditional rigid exoskeletons and rehabilitation equipment frequently lack portability, safety, ergonomic design, and affordability. Traditional rehabilitation approaches frequently require therapist monitoring, resulting in therapy delays.

View Article and Find Full Text PDF

Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ.

View Article and Find Full Text PDF

Bone homeostasis encompasses two interrelated aspects: bone remodeling and cartilage metabolism. Disruption of bone homeostasis can lead to the development of metabolic bone diseases such as osteoporosis and osteoarthritis. The maintenance of bone homeostasis is a complex process that does not solely rely on the functions of the bone tissue itself.

View Article and Find Full Text PDF

Introduction: Skeletal muscle satellite cells (MuSCs or stem cells) play a crucial role in muscle development, maintenance, and regeneration, supporting both hypertrophy and regenerative myogenesis. Syndecans (SDCs) act as communication bridges within the muscle microenvironment, regulating interactions with extracellular matrix components and contributing significantly to tissue repair and inflammation. Specifically, syndecan-4 (SDC4) is involved in muscle regeneration at multiple stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!