Periodontitis is defined as an oral bacterial dysbiosis-induced persistent inflammation on dental supporting tissue resulting in periodontal tissue breakdown and alveolar bone destruction. The disease is initiated by the interaction between periodontopathogens and the host immune system. Its development and severity can be associated with several systemic diseases, such as cardiovascular disease (CVD), diabetes mellitus, and rheumatoid arthritis (RA). Moreover, the latest research has suggested that the oral and gut microbiome hypothesis lays the oral and systemic connection mechanism. Bacterial homeostasis and restoration in the oral cavity and intestine become therapeutics concepts. Concerning the treatment of periodontitis, a local inflammatory condition, prolonged systemic administration of antibiotics is no longer recommended due to bacterial resistance issues. Probiotics and several bioactive metabolites have been widely investigated to address the needs of host modulation therapy in periodontitis. Evidence suggests that the use of probiotics helps downregulate the inflammation process through the regulation of toll-like receptor 4 (TLR4) and the production of fatty acid, targeting reactive oxygen species (ROS). In brief, several herbals have anti-inflammatory properties by inhibiting pro-inflammatory cytokines and mediators, including mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB). Consistently, improvement of periodontal pocket depth (PPD) and gingival index (GI) was seen in a group given melatonin as an adjunct treatment. In all, this review will highlight host modulation agents regarding periodontitis therapy, plausible mechanisms on how probiotics and metabolites work on periodontal restoration, and their reported studies. Limitations given by published studies will be elaborated, while future directions will be proposed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9937986PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e13475DOI Listing

Publication Analysis

Top Keywords

host modulation
12
probiotics metabolites
8
oral gut
8
gut microbiome
8
modulation agents
8
agents periodontitis
8
oral
5
periodontitis
5
probiotics
4
metabolites regulate
4

Similar Publications

Selected Mechanisms of Action of Bacteriophages in Bacterial Infections in Animals.

Viruses

January 2025

Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland.

Bacteriophages, as ubiquitous bacterial viruses in various natural ecosystems, play an important role in maintaining the homeostasis of the natural microbiota. For many years, bacteriophages were not believed to act on eukaryotic cells; however, recent studies have confirmed their ability to affect eukaryotic cells and interact with the host immune system. Due to their complex protein structure, phages can also directly or indirectly modulate immune processes, including innate immunity, by modulating phagocytosis and cytokine reactions, as well as acquired immunity, by producing antibodies and activating effector cells.

View Article and Find Full Text PDF

HDAC6 Facilitates PRV and VSV Infection by Inhibiting Type I Interferon Production.

Viruses

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.

HDAC6 modulates viral infection through diverse mechanisms. Here, we investigated the role of HDAC6 in influencing viral infection in pig cells with the aim of exploiting the potential antiviral gene targets in pigs. Using gene knockout and overexpression strategies, we found that HDAC6 knockout greatly reduced PRV and VSV infectivity, whereas HDAC6 overexpression increased their infectivity in PK15 cells.

View Article and Find Full Text PDF

Treatment options for viral infections are limited and viruses have proven adept at evolving resistance to many existing therapies, highlighting a significant vulnerability in our defenses. In response to this challenge, we explored the modulation of cellular RNA metabolic processes as an alternative paradigm to antiviral development. Previously, the small molecule 5342191 was identified as a potent inhibitor of HIV-1 replication by altering viral RNA accumulation at doses that minimally affect host gene expression.

View Article and Find Full Text PDF

Host RNA-Binding Proteins as Regulators of HIV-1 Replication.

Viruses

December 2024

Laboratory of Molecular and Cellular Virology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile.

RNA-binding proteins (RBPs) are cellular factors involved in every step of RNA metabolism. During HIV-1 infection, these proteins are key players in the fine-tuning of viral and host cellular and molecular pathways, including (but not limited to) viral entry, transcription, splicing, RNA modification, translation, decay, assembly, and packaging, as well as the modulation of the antiviral response. Targeted studies have been of paramount importance in identifying and understanding the role of RNA-binding proteins that bind to HIV-1 RNAs.

View Article and Find Full Text PDF

Vesicular Stomatitis Virus (VSV) has emerged as a promising candidate for various clinical applications, including vaccine development, virus pseudotyping, and gene delivery. Its broad host range, ease of propagation, and lack of pre-existing immunity in humans make it ideal for therapeutic use. VSV's potential as an oncolytic virus has garnered attention; however, resistance to VSV-mediated oncolysis has been observed in some cell lines and tumor types, limiting its effectiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!