Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Acute coronary syndrome (ACS) is one of the leading causes of death and is often accompanied by hypertension.
Methods: We investigated whether hypertension affects the metabolism of patients with ACS. Serum samples were provided from healthy controls (HCs; n=26), patients with ACS (n=20), or those patients with ACS complicated with hypertension (HTN, n=21), and all were subjected to non-targeted metabolomics analyses based on gas chromatography-mass spectrometry (GC/MS). Differential metabolites were screened using principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA). Kyoto Encyclopedia of Genes and Genomes (KEGG) provided metabolic pathways related to these metabolites.
Results: Compared to those in the HC group, 12 metabolites were significantly upregulated and 6 significantly downregulated in the ACS group; among these, L-cystine and isocitric acid showed the most obvious differences, respectively. Compared to those in the ACS group, 3 metabolites were significantly upregulated and 2 metabolites were significantly downregulated in the ACS-HTN group, among which oleic acid and chenodeoxycholic acid showed the most marked difference, respectively. The five most prominent metabolic pathways involved in differential metabolites between the ACS and HC groups were arginine biosynthesis; oxidative phosphorylation; alanine, aspartate and glutamate metabolism; citrate cycle; and glucagon signaling pathway. The metabolic pathways between the ACS and ACS-HTN groups were steroid biosynthesis, fatty acid biosynthesis, arginine biosynthesis, primary bile acid biosynthesis, and tyrosine metabolism.
Conclusions: A comprehensive study of the changes in circulatory metabolomics and the influence of HTN was conducted in patients with ACS. A serum metabolomics test can be used to identify differentially metabolized molecules and allow the classification of patients with ACS or those complicated with HTN.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929784 | PMC |
http://dx.doi.org/10.21037/atm-22-6409 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!