A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improved image quality in transcatheter aortic valve implantation planning CT using deep learning-based image reconstruction. | LitMetric

Background: This study aims to evaluate the impact of a novel deep learning-based image reconstruction (DLIR) algorithm on the image quality in computed tomographic angiography (CTA) for pre-interventional planning of transcatheter aortic valve implantation (TAVI).

Methods: We analyzed 50 consecutive patients (median age 80 years, 25 men) who underwent TAVI planning CT on a 256-dectector-row CT. Images were reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) and DLIR. Intravascular image noise, edge sharpness, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were quantified for ascending aorta, descending aorta, abdominal aorta and iliac arteries. Two readers (one radiologist and one interventional cardiologist) scored task-specific subjective image quality on a five-point scale.

Results: DLIR significantly reduced median image noise by 29-57% at all anatomical locations (all P<0.001). Accordingly, median SNR improved by 44-133% (all P<0.001) and median CNR improved by 44-125% (all P<0.001). DLIR significantly improved subjective image quality for all four pre-specified TAVI-specific tasks (measuring the annulus, assessing valve morphology and calcifications, the coronary ostia, and the suitability of the aorto-iliac access route) for both the radiologist and the interventional cardiologist (P≤0.001). Measurements of the aortic annulus circumference, area and diameter did not differ between ASIR-V and DLIR reconstructions (all P>0.05).

Conclusions: DLIR significantly improves objective and subjective image quality in TAVI planning CT compared to a state-of-the-art iterative reconstruction without affecting measurements of the aortic annulus. This may provide an opportunity for further reductions in contrast medium volume in this population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929406PMC
http://dx.doi.org/10.21037/qims-22-639DOI Listing

Publication Analysis

Top Keywords

image quality
12
transcatheter aortic
8
aortic valve
8
valve implantation
8
deep learning-based
8
learning-based image
8
image reconstruction
8
image noise
8
image
6
improved image
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!