Background: Patients with persistent pulmonary subsolid nodules have a relatively high incidence of lung adenocarcinoma. Preoperative early diagnosis of invasive pulmonary adenocarcinoma spectrum lesions could help avoid extensive advanced cancer management and overdiagnosis in lung cancer screening programs.

Methods: In total, 260 consecutive patients with persistent subsolid nodules ≤30 mm (n=260) confirmed by surgical pathology were retrospectively investigated from February 2016 to August 2020 at the Kaohsiung Veterans General Hospital. All patients underwent surgical resection within 3 months of the chest CT exam. The study subjects were divided into a training cohort (N=195) and a validation cohort (N=65) at a ratio of 3:1. The purpose of our study was to develop and validate a least absolute shrinkage and selection operator-derived nomogram integrating semantic-radiomic features in differentiating preinvasive and invasive pulmonary adenocarcinoma lesions, and compare its predictive value with clinical-semantic, semantic, and radiologist's performance.

Results: In the training cohort of 195 subsolid nodules, 106 invasive lesions and 89 preinvasive lesions were identified. We developed a least absolute shrinkage and selection operator-derived combined nomogram prediction model based on six predictors (nodular size, CTR, roundness, GLCM_Entropy_log10, HISTO_Entropy_log10, and CONVENTIONAL_Humean) to predict the invasive pulmonary adenocarcinoma lesions. Compared with other predictive models, the least absolute shrinkage and selection operator-derived model showed better diagnostic performance with an area under the curve of 0.957 (95% CI: 0.918 to 0.981) for detecting invasive pulmonary adenocarcinoma lesions with balanced sensitivity (92.45%) and specificity (88.64%). The results of Hosmer-Lemeshow test showed P values of 0.394 and 0.787 in the training and validation cohorts, respectively, indicating good calibration power.

Conclusions: We developed a least absolute shrinkage and selection operator-derived model integrating semantic-radiomic features with good calibration. This nomogram may help physicians to identify invasive pulmonary adenocarcinoma lesions for guidance in personalized medicine and make more informed decisions on managing subsolid nodules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929384PMC
http://dx.doi.org/10.21037/qims-22-308DOI Listing

Publication Analysis

Top Keywords

invasive pulmonary
24
subsolid nodules
20
pulmonary adenocarcinoma
20
absolute shrinkage
16
shrinkage selection
16
selection operator-derived
16
adenocarcinoma lesions
16
semantic-radiomic features
12
predict invasive
8
persistent subsolid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!