In recent days, COVID-19 pandemic has affected several people's lives globally and necessitates a massive number of screening tests to detect the existence of the coronavirus. At the same time, the rise of deep learning (DL) concepts helps to effectively develop a COVID-19 diagnosis model to attain maximum detection rate with minimum computation time. This paper presents a new Residual Network (ResNet) based Class Attention Layer with Bidirectional LSTM called RCAL-BiLSTM for COVID-19 Diagnosis. The proposed RCAL-BiLSTM model involves a series of processes namely bilateral filtering (BF) based preprocessing, RCAL-BiLSTM based feature extraction, and softmax (SM) based classification. Once the BF technique produces the preprocessed image, RCAL-BiLSTM based feature extraction process takes place using three modules, namely ResNet based feature extraction, CAL, and Bi-LSTM modules. Finally, the SM layer is applied to categorize the feature vectors into corresponding feature maps. The experimental validation of the presented RCAL-BiLSTM model is tested against Chest-X-Ray dataset and the results are determined under several aspects. The experimental outcome pointed out the superior nature of the RCAL-BiLSTM model by attaining maximum sensitivity of 93.28%, specificity of 94.61%, precision of 94.90%, accuracy of 94.88%, F-score of 93.10% and kappa value of 91.40%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9930854PMC
http://dx.doi.org/10.1080/02664763.2020.1849057DOI Listing

Publication Analysis

Top Keywords

rcal-bilstm model
12
based feature
12
feature extraction
12
residual network
8
based class
8
class attention
8
attention layer
8
layer bidirectional
8
bidirectional lstm
8
covid-19 diagnosis
8

Similar Publications

In recent days, COVID-19 pandemic has affected several people's lives globally and necessitates a massive number of screening tests to detect the existence of the coronavirus. At the same time, the rise of deep learning (DL) concepts helps to effectively develop a COVID-19 diagnosis model to attain maximum detection rate with minimum computation time. This paper presents a new Residual Network (ResNet) based Class Attention Layer with Bidirectional LSTM called RCAL-BiLSTM for COVID-19 Diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!