Microbial life in the deep subsurface occupies rock surfaces as attached communities and biofilms. Previously, epilithic Fennoscandian deep subsurface bacterial communities were shown to host genetic potential, especially for heterotrophy and sulfur cycling. Acetate, methane, and methanol link multiple biogeochemical pathways and thus represent an important carbon and energy source for microorganisms in the deep subsurface. In this study, we examined further how a short pulse of low-molecular-weight carbon compounds impacts the formation and structure of sessile microbial communities on mica schist surfaces over an incubation period of ∼3.5 years in microcosms containing deep subsurface groundwater from the depth of 500 m, from Outokumpu, Finland. The marker gene copy counts in the water and rock phases were estimated with qPCR, which showed that bacteria dominated the mica schist communities with a relatively high proportion of epilithic sulfate-reducing bacteria in all microcosms. The dominant bacterial phyla in the microcosms were Proteobacteria, Firmicutes, and Actinobacteria, whereas most fungal genera belonged to Ascomycota and Basidiomycota. Dissimilarities between planktic and sessile rock surface microbial communities were observed, and the supplied carbon substrates led to variations in the bacterial community composition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9932282PMC
http://dx.doi.org/10.3389/fmicb.2023.1054084DOI Listing

Publication Analysis

Top Keywords

deep subsurface
16
mica schist
12
microcosms deep
8
microbial communities
8
deep
5
communities
5
implications short
4
carbon
4
short carbon
4
carbon pulse
4

Similar Publications

Microbial activity in the deep continental subsurface is difficult to measure due to low cell densities, low energy fluxes, cryptic elemental cycles and enigmatic metabolisms. Nonetheless, direct access to rare sample sites and sensitive laboratory measurements can be used to better understand the variables that govern microbial life underground. In this study, we sampled fluids from six boreholes at depths ranging from 244 m to 1,478 m below ground at the Sanford Underground Research Facility (SURF), a former goldmine in South Dakota, United States.

View Article and Find Full Text PDF

Ephemeral streams are important pollutant conduits, but the mechanisms that control nutrient transport to these systems remain unclear. In the US Virgin Islands (USVI), where most streams flow ephemerally, a lack of continuous hydrologic and water quality data limits our understanding of streamflow behavior and its influence on water quality. We therefore assessed the impact of soil moisture and hydrometeorological conditions on nitrogen (N) concentrations within an ephemeral stream on St.

View Article and Find Full Text PDF

The Antarctic Circumpolar Current (ACC) dominates the transfer of heat, salt, and tracers around the Southern Ocean (SO), driving the upwelling of carbon-rich deep waters around Antarctica. Paleoclimate reconstructions reveal marked variability in SO circulation; however, few records exist coupling quantitative reconstructions of ACC flow with tracers of SO upwelling spanning multiple Pleistocene glacial cycles. Here, we reconstruct near-bottom flow speed variability in the SO south of Africa, revealing systematic glacial-interglacial variations in the strength and/or proximity of ACC jets.

View Article and Find Full Text PDF

Characterizing deep subsurface microbial communities informs our understanding of Earth's biogeochemistry as well as the search for life beyond the Earth. Here we characterized microbial communities within the Kidd Creek Observatory subsurface fracture water system with mean residence times of hundreds of millions to over one billion years. 16S rRNA analysis revealed that biosamplers well isolated from the mine environment were dominated by a putatively anaerobic and halophilic bacterial species from the family, Frackibacter.

View Article and Find Full Text PDF

Intensification of future subsurface marine heatwaves in an eddy-resolving model.

Nat Commun

December 2024

Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Physical Oceanography, Ministry of Education, the College of Oceanic and Atmospheric Sciences, Ocean University of China, and Laoshan Laboratory, Qingdao, China.

A shift in depth range enables marine organisms to adapt to marine heatwaves (MHWs). Subsurface MHWs could limit this pathway, yet their response to climate warming remains unclear. Here, using an eddy-resolving Earth system model forced under a high emission scenario, we project a robust global increase in subsurface MHWs driven by rising subsurface mean temperatures and enhanced temperature variability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!