Background: Non-alcoholic fatty liver disease (NAFLD) represents a severe public health problem. Dysbiosis of gut microbiome has been identified as one of the key environmental factors contributing to NAFLD. As an essential nutrition, Vitamin D (VD) plays an important role in regulating gut microbiota based on its receptor (Vitamin D Receptor, VDR) which is highly expressed in the gastrointestinal tract.

Methods: Rats were fed with HFD (high-fat diet) for 12 weeks. And the rats were treated with VD two times a week by intraperitoneal injection for 12 weeks. H&E staining combined with plasma biochemical index was performed to characterize pathological changes and function of the liver. Fecal microbiota 16S rRNA gene sequencing and metabolomics were taken to reveal the altered gut microbiota and metabolites.

Result: The VD alleviates the HFD-induced lipid accumulation in the liver as well as decreases the levels of amlodipine besylate (ALT) and amlodipine aspartate (AST). VD supplement decreased the ratio of phylum Firmicutes/Bacteroidetes (F/B) but increased alpha diversity. In addition, the VD treatment improved the HFD-induced gut microbiota by increasing the Prevotella and Porphyromonadaceae and decreasing Mucispirillum, Acetatifactor, Desulfovibrio, and Oscillospira abundance. Furthermore, the capability of tyrosine metabolism, tryptophan metabolism, arginine biosynthesis, and sphingolipid metabolism was enhanced after VD treatment. Consistently, Prevotella positively correlated with tryptophan metabolism and sphingolipid metabolism. Importantly, the Prevotella abundance was positively associated with serotonin, melatonin, tryptamine, L-arginine, and 3-dehydrosphinganine which synthesize from tryptophan, tyrosine, arginosuccinate, and serine, respectively.

Conclusion: VD treatment inhibited HFD-induced NAFLD accompany by dysbiosis gut microbiota and metabolites, suggesting that VD supplement could be a potential intervention used for NAFLD treatment by targeting the specific microbiota.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9932697PMC
http://dx.doi.org/10.3389/fmicb.2023.1117644DOI Listing

Publication Analysis

Top Keywords

gut microbiota
20
non-alcoholic fatty
8
fatty liver
8
liver disease
8
dysbiosis gut
8
tryptophan metabolism
8
sphingolipid metabolism
8
microbiota
7
gut
6
metabolism
6

Similar Publications

Primary sclerosing cholangitis is one of the most challenging conditions in hepatology, and due to our limited understanding of its pathogenesis, no causal therapies are currently available. While it was long assumed that a minority of people with IBD also develop PSC, which is sometimes labeled an extraintestinal manifestation of IBD, the clinical phenotype, genetic and intestinal microbiota associations strongly argue for PSC-IBD being a distinct form of IBD, existing alongside ulcerative colitis and Crohn's disease. In fact, the liver itself could contribute to intestinal pathology, clinically overt in 60 - 80 % of patients.

View Article and Find Full Text PDF

Modern habits are becoming more and more disruptive to health. As our days are often filled with circadian disruption and stress exposures, we need to understand how our responses to these external stimuli are shaped and how their mediators can be targeted to promote health. A growing body of research demonstrates the role of the gut microbiota in influencing brain function and behavior.

View Article and Find Full Text PDF

regulates carbohydrate metabolic functions of the gut microbiome in C57BL/6 mice.

Gut Microbes

December 2025

Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, USA.

The probiotic impact of microbes on host metabolism and health depends on both host genetics and bacterial genomic variation. is the predominant human gut commensal emerging as a next-generation probiotic. Although this bacterium exhibits substantial intraspecies diversity, it is unclear whether genetically distinct strains might lead to functional differences in the gut microbiome.

View Article and Find Full Text PDF

Background: Aging-related comorbidities are more common in people with human immunodeficiency virus (HIV) compared to people without HIV. The gut microbiome may play a role in healthy aging; however, this relationship remains unexplored in the context of HIV.

Methods: 16S rRNA gene sequencing was conducted on stool from 1409 women (69% with HIV; 2304 samples) and 990 men (54% with HIV; 1008 samples) in the MACS/WIHS Combined Cohort Study.

View Article and Find Full Text PDF

The complex microbial community residing in the human gut has long been understood to regulate gastrointestinal physiology and to participate in digestive diseases, but its extraintestinal actions and influences are increasingly recognized. This article discusses bidirectional interactions between the gut microbiome and athletic performance, metabolism, longevity and the ability of the gut-brain axis to influence cognitive function and mental health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!