Impaired wound healing is common in patients with diabetes mellitus (DM). Different therapeutic modalities including wound debridement and dressing, transcutaneous electrical nerve stimulation (TENS), nanomedicine, shockwave therapy, hyperbaric (HBOT) and topical (TOT) oxygen therapy, and photobiomodulation (PBM) have been used in the management of chronic diabetic foot ulcers (DFUs). The selection of a suitable treatment method for DFUs depends on the hosts' physiological status including the intricacy and wound type. Effective wound care is considered a critical component of chronic diabetic wound management. This review discusses the causes of diabetic wounds and current therapeutic modalities for the management of DFUs, specifically wound debridement and dressing, TENS, nanomedicine, shockwave therapy, HBOT, TOT, and PBM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9937766 | PMC |
http://dx.doi.org/10.1155/2023/1359537 | DOI Listing |
Cancer continues to represent a substantial burden in terms of its morbidity and mortality, underscoring the imperative for the development of novel and efficacious treatment modalities. Recent advances in cancer immunotherapy have highlighted the importance of identifying tumour-specific antigens, which can assist the immune system in targeting malignant cells effectively. Phage display technology has emerged as an effective tool for the discovery of novel antigens through cDNA library screening, representing a significant advancement in the field of immunological research.
View Article and Find Full Text PDFCombining radiotherapy with targeted therapy benefits patients with advanced epidermal growth factor receptor-mutated non-small cell lung cancer (EGFRm NSCLC). However, the optimal strategy to combine EGFR tyrosine kinase inhibitors (TKIs) with radiotherapy for maximum efficacy and minimal toxicity is still uncertain. Notably, EVs, which serve as communication mediators among tumor cells, play a crucial role in the anti-tumor immune response.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
Monitoring cerebral oxygenation and metabolism, using a combination of invasive and non-invasive sensors, is vital due to frequent disruptions in hemodynamic regulation across various diseases. These sensors generate continuous high-frequency data streams, including intracranial pressure (ICP) and cerebral perfusion pressure (CPP), providing real-time insights into cerebral function. Analyzing these signals is crucial for understanding complex brain processes, identifying subtle patterns, and detecting anomalies.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Engineering and Architecture, University of Trieste, Via Valerio 10, 34127 Trieste, Italy.
Swimmer's shoulder is a common condition among elite swimmers, often leading to pain and reduced performance. Fatigue can exacerbate this condition by affecting shoulder strength, proprioception, and range of motion, potentially increasing the risk of overuse injuries. This preliminary study aimed to evaluate the impact of physiotherapy treatment and the effects of fatigue on shoulder kinematics using inertial and magnetic measurement units (IMUs).
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Urology and Department of Nuclear Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
Background/objectives: The purpose of this study was to develop the gemcitabine-loaded drug-eluting beads (G-DEBs) for transarterial chemoembolization (TACE) in rabbit renal tumors and to evaluate their antitumor effect using 2-deoxy-2-[(18)F]fluoro-D-glucose positron emission tomography/X-ray computed tomography (F-FDG PET/CT).
Methods: DEBs were prepared by polyvinyl alcohol-based macromer crosslinked with -acryl tyrosine and ,'-methylenebis(acrylamide). Gemcitabine was loaded through ion change to obtain G-DEBs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!