Paraxanthine safety and comparison to caffeine.

Front Toxicol

KGK Science Inc, Division of Client Services, Department of Regulatory Affairs, London, ON, Canada.

Published: February 2023

AI Article Synopsis

Article Abstract

Caffeine, one of the most ubiquitous ingredients found in beverages and other ingested food products, has a long history of safe use. As a member of the methylxanthine class of stimulants, caffeine is not devoid of unwanted side effects at any serving level. Caffeine safety has been the subject of a safety workshop by FDA and the Institute of Medicine in the past decade. Thus, investigation into an alternate stimulant with similar pharmacology but improved safety is warranted. Paraxanthine (1,7-dimethylxanthine) is the predominant metabolite of caffeine in humans with similar stimulant properties. The few toxicity studies that are available for paraxanthine suggest that the molecule is relatively safe, although thorough characterization of its safety is required prior to widespread incorporation into foods/beverages. The aim of this study was to evaluate the toxicity of paraxanthine (Rarebird, Inc.) relative to caffeine through a battery of toxicological studies conducted in accordance with international guidelines. These studies evaluated the potential mutagenicity (bacterial reverse mutation, mammalian chromosomal aberration), genetic toxicity ( mammalian cell gene mutation) and acute, sub-acute and sub-chronic oral toxicity of paraxanthine in Sprague Dawley rats. There was no evidence of genetic toxicity or mutagenicity in the studies. An acute oral LD of 829.20 mg/kg body weight (bw) was established. There was no mortality or treatment-related adverse effects in the 14-day repeat dose oral toxicity study, wherein rats received low, mid, or high doses of paraxanthine (50, 100, or 150 mg/kg bw, = 5 rats/sex/group). The same findings were observed in the subchronic repeat-dose 90-day oral toxicity study at daily doses of paraxanthine of 100, 150, or 185 mg/kg bw which were compared to caffeine at 150 or 185 mg/kg bw ( = 10 animals/sex/group). However, mortality was reported in two animals in the high dose caffeine-treated animals. Therefore, the no observed adverse effect level (NOAEL) from the 90-day study was determined to be 150 mg/kg bw for caffeine and 185 mg/kg bw for paraxanthine for both male and female Sprague Dawley rats. These findings may suggest that paraxanthine could be a safer alternative to caffeine in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9932512PMC
http://dx.doi.org/10.3389/ftox.2023.1117729DOI Listing

Publication Analysis

Top Keywords

oral toxicity
12
paraxanthine
9
caffeine
9
caffeine humans
8
toxicity paraxanthine
8
genetic toxicity
8
sprague dawley
8
dawley rats
8
toxicity study
8
doses paraxanthine
8

Similar Publications

The objective of this study was to investigate the characteristics and trends of therapeutic errors in non-healthcare facility settings associated with antithrombotic medications reported to United States Poison Centers by analyzing data from the National Poison Data System from 2000 to 2021. There were 57 288 reported therapeutic error-related exposures involving antithrombotic medications as the primary substance. The rate of therapeutic errors increased by 590.

View Article and Find Full Text PDF

This study aimed to determine the protective role of boric acid in a pregnant rat model of high fructose corn syrup consumption. Consumption of high fructose corn syrup has been associated with adverse health outcomes in humans and animals. Twenty-eight healthy female Wistar albino rats (250-300 g weight and 16-24 weeks old) were randomly distributed into four equal groups (n = 7): Control, Boric acid (BA), High Fructose Corn Syrup (HFCS), HFCS + BA.

View Article and Find Full Text PDF

Mesenchymal stem cell-derived extracellular vesicles in periodontal bone repair.

J Mol Med (Berl)

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases &, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.

Periodontitis is a chronic inflammatory disease that destroys tooth-supporting structures and poses significant public health challenges due to its high prevalence and links to systemic health conditions. Traditional treatments are effective in reducing the inflammatory response and improving the clinical symptoms of periodontitis. However, these methods are challenging to achieve an ideal treatment effect in alveolar bone repair.

View Article and Find Full Text PDF

Famotidine is an H2 receptor antagonist and is currently used on a large scale in gastroenterology. However, Famotidine may also cause severe toxicity to organ systems, including the blood system, digestive system, and urinary system. The objective of this study was to scientifically and systematically investigate the adverse events (AEs) of Famotidine in the real world through the FDA Adverse Event Reporting System (FAERS) database.

View Article and Find Full Text PDF

Sulcardine sulfate (Sul) is a novel antiarrhythmic agent blocking multiple channels and exhibits unique pharmacological properties such as lower APD-dependent prolongation and reduced arrhythmia risk. Sul is currently in Phase III clinical trials, yet studies on its long-term toxicological profile and potential target organs remain unexplored. This study investigated the related toxicity of Sul in Sprague Dawley (SD) rats through repeated oral administration for 26 weeks, followed by a 4-week recovery period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!