Effect of Size on the Formation of Solid Solutions in Ag-Cu Nanoparticles.

J Phys Chem C Nanomater Interfaces

AGH University of Science and Technology, Al. A. Mickiewicza 30, KrakówPL-30 059, Poland.

Published: February 2023

Modern technologies stimulate the quest for multicomponent nanosized materials with improved properties, which are ultimately defined by the atomic arrangement and interphase interactions in the nanomaterial. Here, we present the results of the experimental study of the formation of solid solutions in Ag-Cu nanoparticles in a wide size and temperature range using TEM techniques. The Ag-Cu nanoparticles with a eutectic ratio of components were formed on an amorphous carbon film by the physical vapor deposition technique. Electron diffraction, HAADF-STEM imaging, energy-dispersive X-ray spectroscopy, chemical element mapping, and electron energy loss spectral imaging were used for the characterization of mixing patterns and composition of phases in AgCu nanoparticles down to the atomic level. As a result, we constructed the solid-state part of the Ag-Cu phase diagram for nanoparticles with a size down to 5 nm. We found a highly asymmetric behavior of the solvus lines. Thus, the content of Cu in Ag gradually increased with a size reduction and reached the ultimate value for our configuration of 27 wt % Cu at a nanoparticle size below ∼8 nm. At the same time, no Cu-rich solid solution was found in two-phase AgCu nanoparticles, irrespective of the size and temperature. Moreover, a quasi-homogeneous solid solution was revealed in AgCu nanoparticles with a size smaller than 8 nm already at room temperature. A size dependence of the terminal temperature , which limits the existence of AgCu alloy nanoparticles in a vacuum, was constructed. Evaporation of the AgCu phase with the composition of 86 wt % Ag was observed at temperatures above . We show the crucial role of the mutual solubility of components on the type of atomic mixing pattern in AgCu nanoparticles. A gradual transition from a Janus-like to a homogeneous mixing pattern was observed in Ag-Cu nanoparticles (28 wt % Cu) with a decrease in their size.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931174PMC
http://dx.doi.org/10.1021/acs.jpcc.2c07132DOI Listing

Publication Analysis

Top Keywords

ag-cu nanoparticles
16
agcu nanoparticles
16
nanoparticles
10
size
9
formation solid
8
solid solutions
8
solutions ag-cu
8
size temperature
8
nanoparticles size
8
solid solution
8

Similar Publications

The current investigation explores tri-hybrid mediated blood flow through a ciliary annular model, designed to emulate an endoscopic environment. The human circulatory system, driven by the metachronal ciliary waves, is examined in this study to understand how ternary nanoparticles influence wave-like flow dynamics in the presence of interfacial nanolayers. We also analyze the effect of an induced magnetic field on Ag-Cu-/blood flow within the annulus, focusing on thermal radiation, heat sources, buoyancy forces and ciliary motion.

View Article and Find Full Text PDF

High-stable bimetallic AgCu nanoalloys with core-shell structures for sustainable antibacterial and biofouling mitigation in nanofiltration.

Water Res

March 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China. Electronic address:

Nanofiltration (NF) is crucial for advancing water purification and wastewater reuse technologies. Incorporating biocidal nanoparticles (NPs) such as AgNPs and CuNPs is promising for developing antibacterial and antibiofouling NF membranes, while their application is limited by NPs aggregation, high cost, and severe ion release. In this study, we developed novel NF membranes by integrating bimetallic AgCu nanoalloys via an in-situ reduction and coordination method facilitated by a polydopamine/polyethyleneimine (PDA/PEI) intermediate layer.

View Article and Find Full Text PDF

Microbiologically induced corrosion (MIC) is widespread in the oilfield industry, and new environmentally friendly materials are urgently needed to inhibit MIC with the increasing environmental requirements and microbial resistance problems. The synthesis method and cost of the materials are important factors that must be considered in the production and application. In this study, Ag/Cu bimetallic nanoparticles (BNPs) were synthesized by eco-friendly and sustainable method using waste banana peel extract (BPE) as a green reducing.

View Article and Find Full Text PDF

Unlabelled: The present study outlines an easy, cheap, and environmentally friendly way to make -mediated bimetallic silver-copper nanocomposites (Ag/Cu) that can fight cancer and germs. The gram-positive synthesized Ag, Cu, and their bi-metallic nanocomposites extracellularly. We aimed to prepare the bimetallic nanocomposite in two different ways, and we compared them in terms of characterization and biological applications.

View Article and Find Full Text PDF

Electrophoretic deposition of Ag-Cu-CTS coatings on porous titanium with photothermal-responsive antibacterial effect.

J Colloid Interface Sci

March 2025

State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China. Electronic address:

Porous architecture of titanium implants offers significant advantages in promoting osseointegration and mitigating the "stress shielding" effect. However, challenges remain in enhancing vascularization and preventing infection, especially given the complexities of modifying the intricate surface structure of porous titanium (PT). This study introduces a novel surface modification technique of PT using anti-gravity perfusion electrophoretic deposition (EPD) technique to fabricate antibacterial coatings containing silver (Ag) and copper (Cu) co-doped mesoporous silica nanoparticles (Ag-Cu@MSN) and chitosan binder on the surface of PT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!