This paper reviews published and presents new data on U-Pb detrital zircon ages, and petrographic, geochemical and isotope (Sm-Nd, Lu-Hf) compositions obtained from greywacke sandstones of Kazakhstan in order to reconstruct fossil intra-oceanic arcs that once existed at Pacific-type convergent margins of the Paleo-Asian Ocean (PAO) in Paleozoic time. We focus on orogenic belts of central Kazakhstan (Itmurundy and Tekturmas) and eastern Kazakhstan (Zharma and Char) in the western Central Asian Orogenic belt. These orogenic belts host accretionary complexes with greywacke sandstones of early Paleozoic (central Kazakhstan) and middle-late Paleozoic (eastern Kazakhstan) ages. First, we evaluate general perspectives for studying sandstones to reconstruct survived and disappeared magmatic arcs, taking into account episodes of subduction erosion. Then we discuss the analytical data from sandstones to make conclusions about the ages and formation settings of their igneous protoliths and define maximum deposition ages. Finally, we discuss the role of serpentinite mélanges in tectonic reconstructions. We argue that sandstones hosted by accretionary complexes are typically greywackes deposited close to their igneous sources and buried rapidly. The provenances of the studied greywacke sandstones of central and eastern Kazakhstan were dominated by mafic to andesitic igneous protoliths derived from juvenile mantle sources. The igneous rocks in the provenances were emplaced in an intra-oceanic arc setting. The sandstones were deposited in fore-arc/trench basins or, to a lesser degree, in back-arc basins. The data from both sandstones and serpentinite mélanges reconstruct middle-late-Cambrian, Ordovician, late-Devonian and Carboniferous arcs of the western PAO. The middle-late Cambrian arcs were fully destroyed by subduction erosion, whereas the Ordovician and Carboniferous arcs survived. The late-Devonian arcs were also eroded, but partly. Both the early and late Paleozoic active margins of the PAO were characterized by alternating periods of accretionary growth and subduction erosion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933452 | PMC |
http://dx.doi.org/10.1093/nsr/nwac215 | DOI Listing |
Heliyon
October 2024
Department of Geology, Woldia University, Woldia, Ethiopia.
Numerous intertrappean beds have been reported in different sections of the Ethiopian highlands; however, their detailed paleo-sedimentological characteristics have not been fully examined. This study investigates the source rock composition, tectonic setting, degree of past weathering, paleoclimatic conditions, sediment maturity, and depositional environments of the Angot-Gazo terrestrial sediments through geological mapping, mineralogical analysis, and geochemical approaches. Two terrestrial beds, consisting of mudrock and sandstone, were identified.
View Article and Find Full Text PDFNatl Sci Rev
February 2023
LabEPOM, Novosibirsk State University, Novosibirsk 630090, Russia.
This paper reviews published and presents new data on U-Pb detrital zircon ages, and petrographic, geochemical and isotope (Sm-Nd, Lu-Hf) compositions obtained from greywacke sandstones of Kazakhstan in order to reconstruct fossil intra-oceanic arcs that once existed at Pacific-type convergent margins of the Paleo-Asian Ocean (PAO) in Paleozoic time. We focus on orogenic belts of central Kazakhstan (Itmurundy and Tekturmas) and eastern Kazakhstan (Zharma and Char) in the western Central Asian Orogenic belt. These orogenic belts host accretionary complexes with greywacke sandstones of early Paleozoic (central Kazakhstan) and middle-late Paleozoic (eastern Kazakhstan) ages.
View Article and Find Full Text PDFHeliyon
September 2022
Department of Earth Sciences, University of Geneva, 13 Rue des Maraîchers, 1205 Geneva, Switzerland.
The Cretaceous and Neogene deposits from the Mamfe Basin consisting of sandstone, shale and claystone were studied using petrography, and major, traces and REEs analyses to address sediment source, environment setting, prevailing paleoclimate as well as tectonic regime of the basin. The angular to subangular shape of detrital grains reflects the mineralogical and textural immaturity of sediments and the proximity of the sediment supply source. Sedimentary rocks are composed of a significant number of lithic debris, organic matter, ostracods as well as subrounded heavy minerals referring to notable igneous and metamorphic rocks bordering the Mamfe Basin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!