Machine learning for acute kidney injury: Changing the traditional disease prediction mode.

Front Med (Lausanne)

Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Chinese PLA General Hospital, Beijing, China.

Published: February 2023

Acute kidney injury (AKI) is a serious clinical comorbidity with clear short-term and long-term prognostic implications for inpatients. The diversity of risk factors for AKI has been recognized in previous studies, and a series of predictive models have been developed using traditional statistical methods in conjunction with its preventability, but they have failed to meet the expectations in limited clinical applications, the rapid spread of electronic health records and artificial intelligence machine learning technology has brought new hope for the construction of AKI prediction models. In this article, we systematically review the definition and classification of machine learning methods, modeling ideas and evaluation methods, and the characteristics and current status of modeling studies. According to the modeling objectives, we subdivided them into critical care medical setting models, all medical environment models, special surgery models, special disease models, and special nephrotoxin exposure models. As the first review article to comprehensively summarize and analyze machine learning prediction models for AKI, we aim to objectively describe the advantages and disadvantages of machine learning approaches to modeling, and help other researchers more quickly and intuitively understand the current status of modeling research, inspire ideas and learn from experience, so as to guide and stimulate more research and more in-depth exploration in the future, which will ultimately provide greater help to improve the overall status of AKI diagnosis and treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9935708PMC
http://dx.doi.org/10.3389/fmed.2023.1050255DOI Listing

Publication Analysis

Top Keywords

machine learning
20
models special
12
acute kidney
8
kidney injury
8
models
8
prediction models
8
current status
8
status modeling
8
machine
5
aki
5

Similar Publications

Background: The impact of aortic arch (AA) morphology on the management of the procedural details and the clinical outcomes of the transfemoral artery (TF)-transcatheter aortic valve replacement (TAVR) has not been evaluated. The goal of this study was to evaluate the AA morphology of patients who had TF-TAVR using an artificial intelligence algorithm and then to evaluate its predictive value for clinical outcomes.

Materials And Methods: A total of 1480 consecutive patients undergoing TF-TAVR using a new-generation transcatheter heart valve at 12 institutes were included in this retrospective study.

View Article and Find Full Text PDF

Importance: Biomarkers would greatly assist decision-making in the diagnosis, prevention, and treatment of chronic pain.

Objective: To undertake analytical validation of a sensorimotor cortical biomarker signature for pain consisting of 2 measures: sensorimotor peak alpha frequency (PAF) and corticomotor excitability (CME).

Design, Setting, And Participants: This cohort study at a single center (Neuroscience Research Australia) recruited participants from November 2020 to October 2022 through notices placed online and at universities across Australia.

View Article and Find Full Text PDF

Current approaches for classifying biosensor data in diagnostics rely on fixed decision thresholds based on receiver operating characteristic (ROC) curves, which can be limited in accuracy for complex and variable signals. To address these limitations, we developed a framework that facilitates the application of machine learning (ML) to diagnostic data for the binary classification of clinical samples, when using real-time electrochemical measurements. The framework was applied to a real-time multimeric aptamer assay (RT-MAp) that captures single-frequency (12.

View Article and Find Full Text PDF

Parkinson Disease (PD) is a complex neurological disorder attributed by loss of neurons generating dopamine in the SN per compacta. Electroencephalogram (EEG) plays an important role in diagnosing PD as it offers a non-invasive continuous assessment of the disease progression and reflects these complex patterns. This study focuses on the non-linear analysis of resting state EEG signals in PD, with a gender-specific, brain region-specific, and EEG band-specific approach, utilizing recurrence plots (RPs) and machine learning (ML) algorithms for classification.

View Article and Find Full Text PDF

Deep Learning of CYP450 Binding of Small Molecules by Quantum Information.

J Chem Inf Model

January 2025

Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, United States.

Drug-drug interaction can lead to diminished therapeutic effects or increased toxicity, posing significant risks, especially in polypharmacy, and cytochrome P450 plays an indispensable role in this interaction. Cytochrome P450, responsible for the metabolism and detoxification of most drugs, metabolizes about 90% of Food and Drug Administration-approved drugs, making early detection of potential drug-drug interactions. Over the years, in-silico modeling has become a valuable tool for predicting drug-drug interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!