Pharmaceutical Salts of Piroxicam and Meloxicam with Organic Counterions.

Cryst Growth Des

School of Chemistry, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 K8AF, Ireland.

Published: November 2022

Piroxicam (PRM) and meloxicam (MEL) are two nonsteroidal anti-inflammatory drugs, belonging to the Biopharmaceutics Classification System Class II drugs. In this study, six novel pharmaceutical salts of PRM and MEL with three basic organic counterions, that is, 4-aminopyridine (4AP), 4-dimethylaminopyridine (4DMP), and piperazine (PPZ), were prepared by both slurrying and slow evaporation. These salts were characterized by single-crystal and powder X-ray diffraction, thermal analysis, and Fourier transform infrared spectroscopy. All six salts, especially MEL-4DMP and MEL-4AP, showed a significantly improved apparent solubility and dissolution rate in sodium phosphate solution compared with the pure APIs. Notably, PRM-4AP and PRM-4DMP salts exhibited enhanced fluorescence, and the PRM-PPZ salt showed weaker fluorescence compared with that of pure PRM due to different luminescence mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933440PMC
http://dx.doi.org/10.1021/acs.cgd.2c00722DOI Listing

Publication Analysis

Top Keywords

pharmaceutical salts
8
organic counterions
8
compared pure
8
salts piroxicam
4
piroxicam meloxicam
4
meloxicam organic
4
counterions piroxicam
4
piroxicam prm
4
prm meloxicam
4
meloxicam mel
4

Similar Publications

As fundamental structural scaffolds in numerous natural products and pharmaceutical molecules, the construction of cyclohexenone architectures has remained a pivotal focus in organic chemistry. However, established strategies to synthesize cyclohexenone derivatives Dowd-Beckwith ring-expansion reaction invariably involve the use of transition metals and photoirradiation. Herein, we present a novel transition-metal- and photoirradiation-free pathway to access such structures from α-iodomethyl β-keto esters with electron-rich arenediazonium salts as inexpensive radical initiators and oxidants under mild reaction conditions.

View Article and Find Full Text PDF

An efficient Suzuki cross-coupling reaction under continuous flow conditions was developed utilizing an immobilized solid supported catalyst consisting of bimetallic nickel-palladium nanoparticles (Ni-Pd/MWCNTs). In this process, the reactants can be continuously pumped into a catalyst bed at a high flow rate of 0.6 mL/min and the temperature of 130 °C while the Suzuki products are recovered in high steady-state yields for prolonged continuous processing.

View Article and Find Full Text PDF

α-Terpineol and 1,8-cineole are two important compounds in essential oils. This study developed an efficient method to recover α-terpineol from model oil (MO) based on association extraction by in situ formations of deep eutectic solvent (DES) between α-terpineol and some quaternary ammonium salts (QASs) by hydrogen-bond (HB) interaction. Such interaction could be broken almost completely by the introduction of water, due to the stronger HB interaction between water and QASs, which could release α-terpineol by liquid-liquid separation and save the organic solvents consumption.

View Article and Find Full Text PDF

: Tamoxifen (TAM) is an anti-breast cancer drug suffering from acquired resistance development, prompting cancer relapse. Propranolol (PRO)'s repurposing for cancer therapy has gained interest. This work aimed to investigate combined TAM/PRO therapy for potentiating the anti-breast cancer activity of TAM.

View Article and Find Full Text PDF

Background/objectives: This study investigates the metabolic profile of a single dose of etodolac in healthy volunteers, focusing on pharmacokinetics, clinical parameters, and metabolomic variations to identify biomarkers and pathways linked to drug response, efficacy, and safety.

Methods: Thirty-seven healthy volunteers, enrolled after rigorous health assessments, received a single dose of etodolac (Flancox 500 mg). Pharmacokinetic profiles were determined using tandem mass spectrometry analysis, and the metabolomic profiling was conducted using baseline samples (pre-dose) and samples at maximum drug concentration (post-dose) via liquid chromatography coupled with a quadrupole time-of-flight mass spectrometer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!