Leukemia is a group of diseases characterized by altered growth and differentiation of lymphoid or myeloid progenitors of blood. The existence of specific clusters of cells with stemness-like characteristics like differentiation, self-renewal, detoxification, and resistance to apoptosis in Leukemia makes them difficult to treat. It was recently reported that an oncofetal RNA binding protein, insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), maintains leukemic stem cell properties. BTYNB is an inhibitor of IGF2BP1 that was shown to affect the biological functions of IGF2BP1 however, the effect of BTYNB in Leukemia is not properly established. In this study, we assessed the effect of BTYNB on leukemic cell differentiation and proliferation. We performed cell viability assay to assess the effect of BTYNB in leukemic cells. We then assessed cell morphology of the leukemic cells treated with BTYNB. Further, we conducted an apoptosis assay and cell cycle assay. We found the cell viability of leukemic cells was significantly decreased post treatment with BTYNBs. Further, a noticeable morphological change was observed in BTYNB treated leukemic cells. BTYNB treated leukemic cells showed increased cell death and cell cycle arrest at S-phase. Evidence from the upregulation of and further confirmed apoptosis and cycle arrest. The gene expression of differentiation genes such as , , and were significantly upregulated in BTYNB treated leukemic cells, therefore, confirming cell differentiation. Collectively, our study showed inhibition of IGF2BP1 function using BTYNB promotes differentiation in leukemic cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9932463 | PMC |
http://dx.doi.org/10.1016/j.sjbs.2023.103569 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!