Organic-rich shales and mudstones have long been investigated regarding the control of source, environment, climate, etc. on the enrichment of organic carbon. However, little is documented about how autotrophy and heterotrophy influence organic carbon cycling/export. Here, we show molecular and carbon isotopic compositional changes of the shale or mudstone source rocks from the Chang 3 to 7 members of the Yanchang Formation. The Chang 7 member source rocks have higher quality (480-500 mg/g) and total organic carbon (TOC) (15.3% on average) than other member source rocks; the sterane/hopane ratio and the δC of organic carbon and kerogen decrease from the Chang 3 to 7 members, but Δδ ([average δC of -C + -C] - [average δC of pristane + phytane]) increases, and no aryl isoprenoids and C aromatic carotenoids (e.g., isorenieratane) were observed. These low maturity biomarker features suggest that there were no water stratification, photic zone euxinia (PZE), and no obvious change in the organic matter source, and the water column is generally anoxic. A comparison of the δC of Pr and Ph with the δC of the -C17 and -C18 alkanes reveals a shift in the mode of carbon cycling/export (autotrophy versus heterotrophy) in the Yanchang Formation and that there was dominant heterotrophic bacterial activity or bacterial biomass in the Chang 7 member. The TOC spike in the Chang 7 member may result from boosted carbon cycling/export that improves organic carbon preservation than other members. Possible external forcings on the shift are abundant hydrothermal- or volcanic-derived metal salts as electron acceptors in the palaeowater, which is a reasonable explanation for enhanced heterotrophic bacterial activity. This finding improves our understanding of heterotrophic bacterial activity control on organic matter (OM) preservation and may be a significant supplement for understanding the ecological or environmental forcings in the Yanchang Formation, Ordos Basin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9933198 | PMC |
http://dx.doi.org/10.1021/acsomega.2c07382 | DOI Listing |
Water Sci Technol
January 2025
China Construction Fifth Engineering Division Co., Ltd, Changsha, Hunan 410004, China.
Road runoff underwent treatment using a filter filled with sludge from drinking water treatment plants to assess its capacity for removing dissolved organic matter (DOM). This evaluation utilized resin fractionation, gel permeation chromatography, three-dimensional excitation-emission matrix fluorescence spectroscopy, and UV-Visible spectroscopy. The filter demonstrated enhanced efficiency in removing dissolved organic carbon, achieving removal rates between 70 and 80%.
View Article and Find Full Text PDFWater Sci Technol
January 2025
Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (ITSON), 5 de Febrero 818 sur, Ciudad Obregón, Sonora 85000, México E-mail:
Granular activated carbon (GAC) and GAC modified with anthraquinone-2-sulfonate (AQS) were used as conductive materials during the anaerobic digestion of swine wastewater (SW). The electron transfer capacity (ETC) in the GAC-AQS was 2.1-fold higher than the unmodified GAC.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
Though reduction of hexavalent chromium (Cr(VI)) to Cr(III) by dissolved organic matter (DOM) is critical for the remediation of polluted soils, the effects of DOM chemodiversity and underlying mechanisms are not fully elucidated yet. Here, Cr(VI) reduction and immobilization mediated by microbial byproduct (MBP)- and humic acid (HA)-like components in (hot) water-soluble organic matter (WSOM), (H)WSOM, from four soil samples in tropical and subtropical regions of China were investigated. It demonstrates that Cr(VI) reduction capacity decreases in the order WSOM > HWSOM and MBP-enriched DOM > HA-enriched DOM due to the higher contents of low molecular weight saturated compounds and CHO molecules in the former.
View Article and Find Full Text PDFAcc Mater Res
January 2025
Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
Methane (CH), which is the main component of natural gas, is an abundant and widely available carbon resource. However, CH has a low energy density of only 36 kJ L under ambient conditions, which is significantly lower than that of gasoline (. 34 MJ L).
View Article and Find Full Text PDFEco Environ Health
March 2025
College of Natural Resources and Environment, Northwest A & F University, Xianyang 712100, China.
The interactions of nanoplastics (NPs) with natural organic matters (NOMs) dominate the environmental fate of both substances and the organic carbon cycle. Their binding and aggregation mechanisms at the molecular level remain elusive due to the high structural complexity of NOMs and aged NPs. Molecular modeling was used to understand the detailed dynamic interaction mechanism between NOMs and NPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!