Objectives: It is still a challenge to differentiate space-occupying brain lesions such as tumefactive demyelinating lesions (TDLs), tumefactive primary angiitis of the central nervous system (TPACNS), primary central nervous system lymphoma (PCNSL), and brain gliomas. Convolutional neural networks (CNNs) have been used to analyze complex medical data and have proven transformative for image-based applications. It can quickly acquire diseases' radiographic features and correct doctors' diagnostic bias to improve diagnostic efficiency and accuracy. The study aimed to assess the value of CNN-based deep learning model in the differential diagnosis of space-occupying brain diseases on MRI.
Methods: We retrospectively analyzed clinical and MRI data from 480 patients with TDLs ( = 116), TPACNS ( = 64), PCNSL ( = 150), and brain gliomas ( = 150). The patients were randomly assigned to training ( = 240), testing ( = 73), calibration ( = 96), and validation ( = 71) groups. And a CNN-implemented deep learning model guided by clinical experts was developed to identify the contrast-enhanced T-weighted sequence lesions of these four diseases. We utilized accuracy, sensitivity, specificity, and area under the curve (AUC) to evaluate the performance of the CNN model. The model's performance was then compared to the neuroradiologists' diagnosis.
Results: The CNN model had a total accuracy of 87% which was higher than senior neuroradiologists (74%), and the AUC of TDLs, PCNSL, TPACNS and gliomas were 0.92, 0.92, 0.89 and 0.88, respectively.
Conclusion: The CNN model can accurately identify specific radiographic features of TDLs, TPACNS, PCNSL, and gliomas. It has the potential to be an effective auxiliary diagnostic tool in the clinic, assisting inexperienced clinicians in reducing diagnostic bias and improving diagnostic efficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9932812 | PMC |
http://dx.doi.org/10.3389/fneur.2023.1107957 | DOI Listing |
The increasing prevalence of diabetes mellitus worldwide necessitates that medical undergraduates acquire a deep understanding of the disease to ensure accurate diagnosis and effective management. Traditional teaching methods, while foundational, often lack the interactive elements that enhance student engagement and knowledge retention. This study aimed to evaluate the effectiveness of a novel educational board game, "Diabe-teach," in enhancing knowledge retention among medical students compared with conventional self-study methods.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
Objective: Rapid on-site evaluation (ROSE) of respiratory cytology specimens is a critical technique for accurate and timely diagnosis of lung cancer. However, in China, limited familiarity with the Diff-Quik staining method and a shortage of trained cytopathologists hamper utilization of ROSE. Therefore, developing an improved deep learning model to assist clinicians in promptly and accurately evaluating Diff-Quik stained cytology samples during ROSE has important clinical value.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
Department of Computer Science and Engineering, Shri Shankaracharya Institute of Professional Management and Technology, Raipur, (C.G.), India.
This study presents an advanced methodology for 3D heart reconstruction using a combination of deep learning models and computational techniques, addressing critical challenges in cardiac modeling and segmentation. A multi-dataset approach was employed, including data from the UK Biobank, MICCAI Multi-Modality Whole Heart Segmentation (MM-WHS) challenge, and clinical datasets of congenital heart disease. Preprocessing steps involved segmentation, intensity normalization, and mesh generation, while the reconstruction was performed using a blend of statistical shape modeling (SSM), graph convolutional networks (GCNs), and progressive GANs.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
To assess the choroidal vessels in healthy eyes using a novel three-dimensional (3D) deep learning approach. In this cross-sectional retrospective study, swept-source OCT 6 × 6 mm scans on Plex Elite 9000 device were obtained. Automated segmentation of the choroidal layer was achieved using a deep-learning ResUNet model along with a volumetric smoothing approach.
View Article and Find Full Text PDFSci Rep
January 2025
College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, China.
Hepatic cystic echinococcosis (HCE), a life-threatening liver disease, has 5 subtypes, i.e., single-cystic, polycystic, internal capsule collapse, solid mass, and calcified subtypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!