Neuropathic pain (NP) is associated with sleep disturbances, which may substantially influence the quality of life. Clinical and animal studies demonstrated that neurotransmitter is one of the main contributors to cause sleep disturbances induced by NP. Recently, it was reported that P2X7 receptors (P2X7R) are widely expressed in microglia, which serves crucial role in neuronal activity in the pain and sleep-awake cycle. In this study, we adopted the chronic constriction injury (CCI) model to establish the progress of chronic pain and investigated whether P2X7R of microglia in cortex played a critical role in sleep disturbance induced by NP. At electroencephalogram (EEG) level, sleep disturbance was observed in mice treated with CCI as they exhibited mechanical and thermal hypersensitivity, and inhibition of P2X7R ameliorated these changes. We showed a dramatic high level of P2X7R and Iba-1 co-expression in the cortical region, and the inhibition of P2X7R also adversely affected it. Furthermore, the power of LFPs in ventral posterior nucleus (VP) and primary somatosensory cortex (S1) which changed in the CCI group was adverse after the inhibition of P2X7R. Furthermore, inhibition of P2X7R also decreased the VP-S1 coherence which increased in CCI group. Nuclear magnetic resonance demonstrated inhibition of P2X7R decreased glutamate (Glu) levels in thalamic and cortical regions which were significantly increased in the CCI mice. Our findings provide evidence that NP has a critical effect on neuronal activity linked to sleep and may built up a new target for the development of sleep disturbances under chronic pain conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936193 | PMC |
http://dx.doi.org/10.3389/fnins.2023.1095718 | DOI Listing |
Biochem Biophys Res Commun
January 2025
Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China. Electronic address:
Background: Atrial fibrillation (AF) is a common cardiac arrhythmia that is characterized by atrial electrical remodeling. The P2X7 receptor (P2X7R), an ATP-gated ion channel, has been implicated in cardiovascular pathologies; however, its role in atrial electrical remodeling remains unclear. This study investigated whether inhibition of P2X7R could mitigate isoproterenol (ISO)-induced atrial electrical remodeling in rats and explored the underlying mechanisms.
View Article and Find Full Text PDFBioorg Med Chem
February 2025
Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States. Electronic address:
The purinergic P2X ligand-gated ion channel 7 receptor (P2X7R) plays a critical role in various inflammatory processes and other diseases. Fast determination of compounds P2X7R binding potency and discovery of a promise PET radiotracer for imaging P2X7R require a P2X7R suitable radioligand for radioactive competitive binding assay. Herein, we designed and synthesized thirteen new P2X7R ligands and determined the in vitro binding potency.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang city, Jiangxi province, China.
Am J Transplant
December 2024
Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA. Electronic address:
After skin allotransplantation, intercellular transfer of donor major histocompatibility complex molecules mediated primarily by extracellular vesicles (EVs) released by the allograft is known to contribute to semidirect and indirect activation of alloreactive T cells involved in graft rejection. At the same time, there is ample evidence showing that initiation of adaptive alloimmunity depends on early innate inflammation caused by tissue injury and subsequent activation of myeloid cells (macrophages and dendritic cells) recognizing danger-associated molecular patterns. Among these danger-associated molecular patterns, extracellular adenosine triphosphate plays a key role in innate inflammation by binding to P2X7 receptors (P2X7Rs).
View Article and Find Full Text PDFOpen Med (Wars)
December 2024
Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.
Background: Hyperoxia-induced injury is a well-recognized cause of bronchopulmonary dysplasia (BPD). Existing research studies have not well elucidated the exact mechanisms underlying hyperoxia-induced cellular damage. This study examines the involvement of the P2X7 receptor (P2X7R) in hyperoxia-induced damage to human pulmonary microvascular endothelial cells (HPMVECs) via the NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!