Introduction: Numerous previous studies have shown that eye movements induce errors in the localization of briefly flashed stimuli. Remarkably, the error pattern is indicative of the underlying eye movement and the exact experimental condition. For smooth pursuit eye movements (SPEM) and the slow phase of the optokinetic nystagmus (OKN), perceived stimulus locations are shifted in the direction of the ongoing eye movement, with a hemifield asymmetry observed only during SPEM. During the slow phases of the optokinetic afternystagmus (OKAN), however, the error pattern can be described as a perceptual expansion of space. Different from SPEM and OKN, the OKAN is an open-loop eye movement.
Methods: Visually guided smooth pursuit can be transformed into an open-loop eye movement by briefly blanking the pursuit target (gap). Here, we examined flash localization during open-loop pursuit and asked, whether localization is also prone to errors and whether these are similar to those found during SPEM or during OKAN. Human subjects tracked a pursuit target. In half of the trials, the target was extinguished for 300 ms (gap) during the steady-state, inducing open-loop pursuit. Flashes were presented during this gap or during steady-state (closed-loop) pursuit.
Results: In both conditions, perceived flash locations were shifted in the direction of the eye movement. The overall error pattern was very similar with error size being slightly smaller in the gap condition. The differences between errors in the open- and closed-loop conditions were largest in the central visual field and smallest in the periphery.
Discussion: We discuss the findings in light of the neural substrates driving the different forms of eye movements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9932511 | PMC |
http://dx.doi.org/10.3389/fnins.2023.1058340 | DOI Listing |
Hear Res
December 2022
Eaton-Peabody Lab, Mass. Eye and Ear, 243 Charles St., Boston MA 02114, USA.
Many details of the operation of the mammalian cochlea are known, but how they all work together to produce cochlear amplification is not understood. Outer-hair-cell (OHC) motility produces two kinds of amplification: non-propagating amplification (NPA) that is from local OHCs, and traveling-wave amplification (TWA) that increases basilar-membrane (BM) motion. Proposed here are a series of hypotheses that provide a new explanation, the "OoC-area-pump", for TWA: (1) In the short-wave region OHC vibrations cause cyclic longitudinal motion of fluid in the organ of Corti (OoC) and peri-Deiters-cell tissue, (2) the longitudinal motion changes the local OoC area, which (3) by reticular-lamina (RL) movement drives the fluid in scala media in a way that amplifies the fluid-pressure traveling wave.
View Article and Find Full Text PDFGeroscience
January 2025
Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
Background: Rapid eye movement (REM) sleep behavior disorder (RBD) is an early and significant prodromal marker for Parkinson's disease (PD). While the association between RBD and PD has been well-documented, the underlying pathophysiology differentiating PD patients with RBD (PD-RBD +) from those without RBD (PD-RBD-) remained unclear. This study aims to investigate the possible relationship between RBD and striatal dopamine depletion in de novo PD patients.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom.
Ocular microtremor (OMT) is a fixational eye movement that cannot be seen with the naked eye but is always present, even when the eye appears motionless/still. The link between OMT and brain function provides a strong rationale for investigation as there lies potential for its use as a biomarker in populations with neurological impairments. OMT frequency is typically 70-80Hz in healthy adults and research suggests that this will be reduced in those with neurological disease such as Parkinson's Disease (PD).
View Article and Find Full Text PDFSci Rep
January 2025
Yunnan Diqing Non-Ferrous Metals Co., Ltd, Yunnan, 674400, China.
Fatigue can cause human error, which is the main cause of accidents. In this study, the dynamic fatigue recognition of unmanned electric locomotive operators under high-altitude, cold and low oxygen conditions was studied by combining physiological signals and multi-index information. The characteristic data from the physiological signals (ECG, EMG and EM) of 15 driverless electric locomotive operators were tracked and tested continuously in the field for 2 h, and a dynamic fatigue state evaluation model based on a first-order hidden Markov (HMM) dynamic Bayesian network was established.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA.
The vestibular system is vital for maintaining stable vision during daily activities. When peripheral vestibular input is lost, patients initially experience impaired gaze stability due to reduced effectiveness of the vestibular-ocular-reflex pathway. To aid rehabilitation, patients are often prescribed gaze-stabilization exercises during which they make self-initiated active head movements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!