Automatic medical image detection aims to utilize artificial intelligence techniques to detect lesions in medical images accurately and efficiently, which is one of the most important tasks in computer-aided diagnosis (CAD) systems, and can be embedded into portable imaging devices for intelligent Point of Care (PoC) Diagnostics. The Feature Pyramid Networks (FPN) based models are widely used deep-learning-based solutions for automatic medical image detection. However, FPN-based medical lesion detection models have two shortcomings: the object position offset problem and the degradation problem of IoU-based loss. Therefore, in this work, we propose a novel FPN-based backbone model, i.e., Multi-Pathway Feature Pyramid Networks with Position Attention Guided Connections and Vertex Distance IoU (abbreviated as PAC-Net), to replace vanilla FPN for more accurate lesion detection, where two innovative improvements, a position attention guided connection (PAC) module and Vertex Distance IoU Vertex Distance Intersection over Union loss, are proposed to address the above-mentioned shortcomings of vanilla FPN, respectively. Extensive experiments are conducted on a public medical image detection dataset, i.e., Deeplesion, and the results showed that i) PAC-Net outperforms all state-of-the-art FPN-based depth models in both evaluation metrics of lesion detection on the DeepLesion dataset, ii) the proposed PAC module and VDIoU loss are both effective and important for PAC-Net to achieve a superior performance in automatic medical image detection tasks, and iii) the proposed VDIoU loss converges more quickly than the existing IoU-based losses, making PAC-Net an accurate and also highly efficient 3D medical image detection model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936528PMC
http://dx.doi.org/10.3389/fbioe.2023.1049555DOI Listing

Publication Analysis

Top Keywords

medical image
24
image detection
24
vertex distance
16
position attention
12
attention guided
12
distance iou
12
automatic medical
12
lesion detection
12
detection
9
guided connections
8

Similar Publications

Shaping the structural dynamics of motor learning through cueing during sleep.

Sleep

January 2025

UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.

Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).

View Article and Find Full Text PDF

This study intents to detect graphical network features associated with seizure relapse following antiseizure medication (ASM) withdrawal. Twenty-four patients remaining seizure-free (SF-group) and 22 experiencing seizure relapse (SR-group) following ASM withdrawal as well as 46 matched healthy participants (Control) were included. Individualized morphological similarity network was constructed using T1-weighted images, and graphic metrics were compared between groups.

View Article and Find Full Text PDF

Objective: Segmentation of individual thigh muscles in MRI images is essential for monitoring neuromuscular diseases and quantifying relevant biomarkers such as fat fraction (FF). Deep learning approaches such as U-Net have demonstrated effectiveness in this field. However, the impact of reducing neural network complexity remains unexplored in the FF quantification in individual muscles.

View Article and Find Full Text PDF

This systematic review and meta-analysis aimed to assess the accuracy and success rate of ultrasound in determining fetal sex. A search was conducted on Medline, Cochrane Library, and EMBASE databases, and the reference lists of selected studies were also reviewed. Meta-analyses were performed using Revman 5.

View Article and Find Full Text PDF

Background: Recent technological advances have introduced novel methods for measuring body composition, each with unique benefits and limitations. The choice of method often depends on the trade-offs between accuracy, cost, participant burden, and the ability to measure specific body composition compartments.

Objective: To review the considerations of cost, accuracy, portability, and participant burden in reference and emerging body composition assessment methods, and to evaluate their clinical applicability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!