A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrical stimulation to promote muscle and motor unit force and endurance after spinal cord injury. | LitMetric

Electrical stimulation to promote muscle and motor unit force and endurance after spinal cord injury.

J Physiol

Division of Physical Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.

Published: April 2023

Fatigue is a common feature of paralysed skeletal muscle, hindering performance when subjected to functional electrical stimulation (ES) for movement. We asked whether (1) 20 Hz ES for 5% of each day (2.5 s on and 2.5 s off for 3 h) increases tibialis anterior and medial gastrocnemius muscle and motor unit (MU) endurance after paralysis by hemisection and deafferentation (HSDA), and (2) muscle length or loading affects their isometric contractile properties. The daily 5% ES increased muscle endurance, largely independent of muscle length or loading, but to a lesser extent than the daily 50% ES (2.5 s on and 2.5 s off for 24 h). The former was effective in counteracting the decline and slowing of muscle force promoted by the 50% ES. The altered muscle properties were confirmed at the MU level in final experiments once the properties had plateaued. Fast-fatigable MUs were converted to fatigue-intermediate and -resistant MUs that finally comprised ∼80% as compared to ∼10% of the total MU number in the daily 5% ES and the control normal groups, respectively. We conclude that the daily 5% ES regimen counteracts the fatigue of paralysed muscle without compromising contractile force, and thereby, is effective in conditioning muscle for effective movement. KEY POINTS: We asked whether 20 Hz electrical stimulation (ES) for 5% of each day (2.5 s on and 2.5 s off for 3 h; 5% ES) preserves medial gastrocnemius and tibialis anterior muscle and MU isometric contractile forces and increases their endurance after paralysis. Daily 5% ES promoted increased muscle endurance irrespective of the muscle length or loading but to a lesser extent than daily 50% ES (20 Hz ES 2.5 s on and 2.5 s off for 24 h). 5% ES was effective in counteracting decline and slowing of muscle force that resulted from 50% ES. Motor units (MUs) were converted from fast fatigable to fatigue intermediate and resistant MUs, comprising ∼80% as compared to ∼10% in the control normal groups. We conclude that the 5% ES regimen counteracts the fatigue of paralysed muscle without compromising contractile force, and thereby is effective in conditioning the muscle for effective movement.

Download full-text PDF

Source
http://dx.doi.org/10.1113/JP283972DOI Listing

Publication Analysis

Top Keywords

muscle
16
25 s 25 s
16
electrical stimulation
12
muscle length
12
length loading
12
muscle motor
8
motor unit
8
asked 20 hz
8
25 s
8
day 25 s
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!