Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Optically Mie-resonant crystalline silicon nanoparticles have long attracted interest for their unique scattering behaviors. Here, we report a bottom-up nonthermal plasma process that produces highly monodisperse particles, with diameters controllable between 60 and 214 nm, by temporarily electrostatically trapping nanoparticles inside a continuous-flow plasma reactor. The particle size is tuned by adjusting the gas residence time in the reactor. By dispersing the nanoparticles in water, optical extinction measurements indicate colloidal solutions of a particle-based metafluid in which particles support both strong magnetic and electric dipole resonances at visible wavelengths. The spectral overlap of the electric and magnetic resonances gives rise to directional Kerker scattering. The extinction measurements show excellent agreement with Mie theory, supporting the idea that the fabrication process enables particles with narrow distributions in size, shape, and composition. This single-step gas-phase process can also produce Mie-resonant nanoparticles of dielectric materials other than silicon and directly deposit them on the desired substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.2c05084 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!