A new chromone derivative, aspergione A (), along with seven known metabolites, was isolated from a mangrove endophytic fungus, sp. GXNU-B1, which was collected from mangrove L. Their structures and the absolute configuration of were elucidated based on the analysis of HR-ESI-MS, NMR, and ECD calculation. Compounds - were evaluated for their anti-inflammatory effects on the production of nitricoxide (NO). Compounds and have potent inhibitory effects against NO production in activated macrophages with IC values of 38.26 and 44.30 M, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14786419.2023.2181805DOI Listing

Publication Analysis

Top Keywords

chromone derivative
8
effects production
8
derivative endophytic
4
endophytic gxnu-b1
4
gxnu-b1 chromone
4
derivative aspergione
4
aspergione metabolites
4
metabolites isolated
4
isolated mangrove
4
mangrove endophytic
4

Similar Publications

Alzheimer's disease is a neurodegenerative disorder that impairs neurocognitive functions. Acetylcholinesterase, Butyrylcholinesterase, Monoamine Oxidase B, Beta-Secretase, and Glycogen Synthase Kinase Beta play central roles in its pathogenesis. Current medications primarily inhibit AChE but fail to halt or reverse disease progression due to the multifactorial nature of Alzheimer's.

View Article and Find Full Text PDF

Phytochemicals in Obesity Management: Mechanisms and Clinical Perspectives.

Curr Nutr Rep

January 2025

Research and Development cell, Department of Intellectual property Rights, Lovely Professional University, Jalandhar- Delhi Grand Trunk Rd., Phagwara, Punjab, 144411, India.

Purpose Of Review: This review explores the mechanistic pathways and clinical implications of phytochemicals in obesity management, addressing the global health crisis of obesity and the pressing need for effective, natural strategies to combat this epidemic.

Recent Findings: Phytochemicals demonstrate significant potential in obesity control through various molecular mechanisms. These include the modulation of adipogenesis, regulation of lipid metabolism, enhancement of energy expenditure, and suppression of appetite.

View Article and Find Full Text PDF

Glioblastomas (GBM) are malignant tumours with poor prognosis. Treatment involves chemotherapy and/or radiotherapy; however, there is currently no standard treatment for recurrence, and prognosis remains unfavourable. Inflammatory mediators and microRNAs (miRNAs) influence the aggressiveness of GBM, being involved in the communication with the cells of the tumour parenchyma, including microglia/macrophages, and maintaining an immunosuppressive microenvironment.

View Article and Find Full Text PDF
Article Synopsis
  • Gastric cancer poses a significant health challenge globally, leading to a search for innovative treatments.
  • Natural polyphenolic compounds like resveratrol, piceatannol, curcumin, and quercetin show potential in cancer prevention and treatment due to their diverse biological effects.
  • While these compounds have shown promise in fighting gastric cancer, issues like low bioavailability highlight the need for further research on effective delivery methods.
View Article and Find Full Text PDF

Gut bacterial metabolism of dietary flavonoids results in the production of a variety of phenolic acids, whose contributions to health remain poorly understood. Here, we show that supplementation with the commonly consumed flavonoid quercetin impacted gut microbiome composition and resulted in a significant reduction in atherosclerosis burden in conventionally raised (ConvR) Apolipoprotein E (ApoE) knockout (KO) mice but not in germ-free (GF) ApoE KO mice. Metabolomic analysis revealed that consumption of quercetin significantly increased plasma levels of benzoylglutamic acid, 3,4 dihydroxybenzoic acid (3,4-DHBA) and its sulfate-conjugated form in ConvR mice, but not in GF mice supplemented with the flavonoid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!