Solid-state electrolytes (SSEs) with high ion conductivity are pivotal for the development and large-scale adoption of green-energy conversion and storage technologies such as fuel cells, electrocatalysts and solid-state batteries. Yet, SSEs are extremely complex materials for which general rational design principles remain indeterminate. Here, we combine first-principles materials modelling, computational power and modern data analysis techniques to advance towards the solution of such a fundamental and technologically pressing problem. Our data-driven survey reveals that the correlations between ion diffusivity and other materials descriptors in general are monotonic, although not necessarily linear, and largest when the latter are of vibrational nature and explicitly incorporate anharmonic effects. Surprisingly, principal component and -means clustering analyses show that elastic and vibrational descriptors, rather than the usual ones related to chemical composition and ion mobility, are best suited for reducing the high complexity of SSEs and classifying them into universal classes. Our findings highlight the need for considering databases that incorporate temperature effects to improve our understanding of SSEs and point towards a generalized approach to the design of energy materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2mh01516aDOI Listing

Publication Analysis

Top Keywords

solid-state electrolytes
8
universal ion-transport
4
ion-transport descriptors
4
descriptors classes
4
classes inorganic
4
inorganic solid-state
4
electrolytes solid-state
4
sses
4
electrolytes sses
4
sses high
4

Similar Publications

CuF and LiBOB were co-introduced into polycarbonate-based polymer electrolytes (PVT-CB) to overcome the trade-offs between ionic conduction and interfacial stability, resulting in improved ionic conductivity (8.4 × 10 S cm) and enhanced electrochemical stability (5.04 V Li/Li).

View Article and Find Full Text PDF

Rapid Na Transport Pathway and Stable Interface Design Enabling Ultralong Life Solid-State Sodium Metal Batteries.

Angew Chem Int Ed Engl

December 2024

School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Dalian University of Technology, Dalian, 116024, China.

Sodium-metal batteries (SMBs) using solid-state polymer electrolytes (SPEs) show impressive superiority in energy density and safety. As promising candidates for SPEs, solid-state plastic crystal electrolytes (SPCE) based on succinonitrile (SN) plastic crystal could achieve high ion conductivity and wide voltage window. Nonetheless, the notorious SN decomposition reaction on the electrode/electrolyte interface seriously challenges the stable operation of the battery.

View Article and Find Full Text PDF

Enhancing both ionic conductivity and mechanical robustness remains a major challenge in designing solid-state electrolytes for lithium batteries. This work presents a novel approach in designing mechanically robust and highly conductive solid-state electrolytes, which involves ionic liquid-based cross-linked polymer networks incorporating polymeric ionic liquids (PILs). First, linear PILs with different side groups were synthesized for optimizing the structure.

View Article and Find Full Text PDF

Ti Doping Decreases Mn and Ni Dissolution from High-Voltage LiNiMnO Cathodes.

ACS Mater Au

January 2025

Solid State and Structural Chemistry Unit, IISc, Bengaluru 560012, Karnataka, India.

LiNiMnO (LNMO), with its high operating voltage, is a favorable cathode material for lithium-ion batteries. However, Ni and Mn dissolution and the associated low cycle life limit their widespread adoption. In this work, we investigate titanium doping as a strategy to mitigate Mn and Ni dissolution from LNMO electrodes.

View Article and Find Full Text PDF

Significantly promoting the lithium-ion transport performances of MOFs-based electrolytes a strategy of introducing fluoro groups in the crystal frameworks.

Chem Commun (Camb)

January 2025

Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.

Metal-organic frameworks (MOFs) with well-ordered channels are considered ideal solid-state electrolytes (SSEs) for lithium ionic conductors and are expected to be utilized in all-solid-state Li-ion batteries. However, the outstanding Li conductivity of MOFs, especially the properties at low temperatures, has become a crucial problem to overcome. Herein, a breakthrough is first realized to cope with this challenge a strategy of introducing fluoro-substituted bridging ligands in MOFs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!