Focal adhesion formation of primary human gingival fibroblast on hydrothermally and in-sol-made TiO -coated titanium.

Clin Implant Dent Relat Res

Department of Prosthetic Dentistry and Stomatognathic Physiology, University of Turku, Turku, Finland.

Published: June 2023

Optimal cell adhesion of the gingival fibroblasts to dental implants is important for maintaining good implant integration. The aim of this study was to discover, if the nanoporous TiO -coating on titanium alloy substrates is able to increase the cell adhesion of the human gingival fibroblasts (HGF). The study consisted of three differently produced titanium groups: hydrothermally produced TiO -coating (HT), novel TiO -coating made in sol (SOL), and noncoated control group. Primary HGF cells were initiated from gingival biopsies from patients having a third molar extraction. HGF were cultivated on titanium discs for 2 and 24 h to determine the initial attachment with confocal microscope. The cell spreading and adhesion protein signals were measured. In addition, expression of adhesion proteins vinculin, paxillin, and focal adhesion kinase (FAK) were measured after 3 days of cultivation by using Western Blotting. Higher protein levels of paxillin, vinculin, and FAK were induced on both coated discs compared to noncoated discs. The difference was statistically significant (p < 0.05) concerning expression of paxillin. The cell spreading was significantly larger on SOL discs after 2 and 24 h when comparing to noncoated controls. The confocal microscope analyses revealed significantly higher adhesion protein signals on both HT- and SOL-coated titanium compared to control group. This study showed, that both methods to produce TiO -coatings are able to increase HGF adhesion protein expression and cell spreading on titanium surface. Accordingly, the coatings can potentially improve the gingival attachment to titanium implant surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cid.13195DOI Listing

Publication Analysis

Top Keywords

tio -coating
12
focal adhesion
8
human gingival
8
cell adhesion
8
gingival fibroblasts
8
adhesion
5
adhesion formation
4
formation primary
4
primary human
4
gingival
4

Similar Publications

We present a novel approach for enhancing photocatalytic efficiency by developing polyaniline (PANI) and polyindole (PIN)-coated TiO nanotubes (TNT) through a combination of chemical oxidation and hydrothermal processes. The PANI-PIN coating was systematically applied to both the internal and external surfaces of the nanotubes to enhance the photocatalytic active sites and optimize pollutant adsorption. The dual-coated structure enhances the interaction with pollutants, facilitating a more efficient degradation of 4-nitrophenol (4-NP) when exposed to visible light.

View Article and Find Full Text PDF

Enhancing visible light degradation of gaseous formaldehyde with CuO/OVs-TiO photocatalyst loaded wallpaper: Preparation, efficacy and mechanism.

Chemosphere

January 2025

Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China. Electronic address:

Photocatalytic oxidation is considered to be a highly promising technology for indoor formaldehyde (HCHO) abatement. However, powdered photocatalysts encounter practical challenges due to their recycling difficulties and propensity for aggregation. In this study, we developed a CuO/OVs-TiO photocatalyst dispersion using various physical and chemical methods, which could be stabilized for an extended period.

View Article and Find Full Text PDF

Super hydrophilic and super oleophobic carbon nanotube/TiO composite membranes for efficient separation of algal-derived oil/water emulsions.

Colloids Surf B Biointerfaces

December 2024

Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.

The separation of oil from microalgae aqueous emulsions is a critical step in producing algal-derived biofuels and nutraceuticals. This study presents the development of super hydrophilic and super oleophobic composite membranes to efficiently separate algal oil from oil/water emulsions. Carbon nanotubes (CNTs) were functionalized with polydopamine (PDA), polyethylene glycol (PEG), and titanium dioxide (TiO) nanoparticles and coated onto a mixed cellulose ester (MCE) substrate to fabricate the composite membranes.

View Article and Find Full Text PDF

Fluorine-expedited nitridation of layered perovskite SrTiO for visible-light-driven photocatalytic overall water splitting.

Nat Commun

January 2025

Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China.

Photocatalytic overall water splitting is a promising approach for a sustainable hydrogen provision using solar energy. For sufficient solar energy utilization, this reaction ought to be operated based on visible-light-active semiconductors, which is very challenging. In this work, an F-expedited nitridation strategy is applied to modify the wide-bandgap semiconductor SrTiO for visible-light-driven photocatalytic overall water splitting.

View Article and Find Full Text PDF

Facile Formation of Durable SiO-TiO Coatings on Plastic Films for Self-Cleaning and Antifogging.

ACS Appl Mater Interfaces

January 2025

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.

Surface fogging affects the light transmittance of various transparent materials and poses potential safety hazards. Superhydrophilic TiO surfaces can effectively prevent fogging by promoting continuous water film formation; however, they often struggle to maintain stable hydrophilicity and adhesion on plastic films. Self-cleaning and antifogging coatings on plastic substrates are crucial for applications requiring long-term clarity and minimal maintenance costs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!