Global change is expected to have complex effects on the distribution and transmission patterns of zoonotic parasites. Modelling habitat suitability for parasites with complex life cycles is essential to further our understanding of how disease systems respond to environmental changes, and to make spatial predictions of their future distributions. However, the limited availability of high quality occurrence data with high spatial resolution often constrains these investigations. Using 449 reliable occurrence records for Echinococcus multilocularis from across Europe published over the last 35 years, we modelled habitat suitability for this parasite, the aetiological agent of alveolar echinococcosis, in order to describe its environmental niche, predict its current and future distribution under three global change scenarios, and quantify the probability of occurrence for each European country. Using a machine learning approach, we developed large-scale (25 × 25 km) species distribution models based on seven sets of predictors, each set representing a distinct biological hypothesis supported by current knowledge of the autecology of the parasite. The best-supported hypothesis included climatic, orographic and land-use/land-cover variables such as the temperature of the coldest quarter, forest cover, urban cover and the precipitation seasonality. Future projections suggested the appearance of highly suitable areas for E. multilocularis towards northern latitudes and in the whole Alpine region under all scenarios, while decreases in habitat suitability were predicted for central Europe. Our spatially explicit predictions of habitat suitability shed light on the complex responses of parasites to ongoing global changes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.16616DOI Listing

Publication Analysis

Top Keywords

habitat suitability
16
global change
12
current future
8
future distribution
8
complex life
8
change scenarios
8
echinococcus multilocularis
8
multilocularis europe
8
distribution
4
distribution parasite
4

Similar Publications

Landscape influences bat suppression of pine processionary moth: Implications for pest management.

J Environ Manage

December 2024

CE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.

Bats provide important ecosystem services, particularly in agriculture, yet integrating bat management into conservation plans remains challenging. Some landscape features considerably influence bat presence, diversity, and ecosystem service provision. Understanding the relationship between landscape structure, composition, pest suppression, and ecosystem services is crucial.

View Article and Find Full Text PDF

The complex life cycle traits of amphibians make them especially sensitive to environmental change, and their ongoing conservation requires the maintenance of suitable habitat that accounts for such life cycle characteristics which may impacted by local environmental dynamics arising from climate change and human disturbance. Many existing studies on amphibian habitats disregard this important issue, leading to uncertainty in managing critical habitats. The application of appropriate conservation practices is therefore constrained by the fact that the major factors influencing amphibian habitats, and their spatio-temporal dynamics at different life stages, are poorly understood.

View Article and Find Full Text PDF

Use of alfalfa cellulose for formulation of strong, biodegradable film to extend the shelf life of strawberries.

Int J Biol Macromol

December 2024

Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA. Electronic address:

Plastic packaging has increased concerns about human health and the ecosystem due to non-biodegradability. Several biopolymers, such as cellulose, starch, and proteins, are being explored, and cellulosic residue from agricultural biomass is suitable to overcome this predicament. Herein, cellulosic residue fibers (ACR) extracted from alfalfa were used to prepare biodegradable films by solubilizing them in ZnCl solution and crosslinking the chains with calcium ions (CaCl) and sorbitol.

View Article and Find Full Text PDF

This study is the first modeling exercise to assess the impacts of climate change on the current and future global distribution of Bacillus thuringiensis (Bt). Bt is a common Gram-positive, rod-shaped bacterium widely distributed in various environments, including soil and water. It is widely recognized as a source of effective and safe agricultural biopesticides for pest management in various climatic regions globally.

View Article and Find Full Text PDF

Invasive alien plants pose a significant threat to biodiversity and the agricultural economy. The invasive weed (Ammannia coccinea) competes with rice in paddy fields, potentially threatening rice production. Despite the crucial need to estimate the global geographical distribution and ecological niche dynamics of A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!