A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Strategies to Improve the Oxygen Reduction Reaction Activity on Pt-Bi Bimetallic Catalysts: A Density Functional Theory Study. | LitMetric

Strategies to Improve the Oxygen Reduction Reaction Activity on Pt-Bi Bimetallic Catalysts: A Density Functional Theory Study.

J Phys Chem Lett

Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China.

Published: February 2023

Decreasing the level of use of Pt in proton exchange membrane fuel cells is of great research interest both academically and industrially. In this work, we systematically studied the oxygen reduction reaction (ORR) following the four-electron association mechanism at various Pt-Bi surfaces with density functional theory calculations. The results showed that the introduction of Bi changes the potential-determining step of ORR. Moreover, the hydroxy adsorption free energy () can be used as a descriptor of ORR activity, and 0.74 eV is the ideal for it to reach its maximum. Notably, we also found that the tensile strain introduced by Bi and electron transfer between Pt and Bi synergize to modulate the d-band of Pt to contract, shift downward, and break the 5d6s valence electron configuration of Pt, and accordingly, PtBi(100), with the lowest d-band center, gives the best ORR activity, which is even slightly higher than that of Pt(111).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.2c03465DOI Listing

Publication Analysis

Top Keywords

oxygen reduction
8
reduction reaction
8
density functional
8
functional theory
8
orr activity
8
strategies improve
4
improve oxygen
4
reaction activity
4
activity pt-bi
4
pt-bi bimetallic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!