Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Matrix-assisted laser desorption-ionization-time of flight mass spectrometry (MALDI-TOF) has recently been widely used in clinical microbiology laboratories, with the advantages of being reliable, rapid, and cost-effective. Here, we reported the performance of two MALDI-TOF MS instruments, EXS3000 (Zybio, China) and Autof ms1000 (Autobio, China), which are commonly used in clinical microbiology field.
Methods: A total of 209 common clinical common isolates, including 70 gram-negative bacteria strains, 58 gram-positive bacteria strains, 33 yeast strains, 15 anaerobic bacteria strains, and 33 mold strains, and 19 mycobacterial strains were tested. All strains were identified by EXS3000 (Zybio, China) and Autof ms1000 (Autobio, China). Sequence analysis of 16S rRNA or ITS regions was used to verify all strains.
Results: Current study found that species-level discrimination was found to be 191 (91.39%) and 190 (90.91%) by EXS3000 and Autof ms1000, respectively. Genus-level discrimination was 205 (98.09%) by the EXS3000 and 205 (98.09%) by the Autof ms1000, respectively. The correct results at species level of the EXS3000 were 91.43% (64/70) for gram-negative bacteria, 93.1% (54/58) for gram-positive cocci, 93.94% (31/33) for yeast, 100% (15/15) for anaerobes and 81.82% (27/33) for filamentous fungi. The correct results at species level of the Autof ms1000 were 92.86% (65/70) for gram-negative bacteria, 91.38% (53/58) for gram-positive cocci, 93.94% (31/33) for yeast, 100% (15/15) for anaerobes and 78.79% (26/33) for filamentous fungi.
Conclusion: Although the results show that the EXS3000 and Autof ms1000 systems are equally good choices in terms of analytical efficiency for routine procedures, the test result of EXS3000 is slightly better than Autof ms1000. It's worth mentioning that the target plate of the EXS 3000 instrument is reusable, but the target plate of the Autof ms1000 is disposable, making the EXS3000 more effective in reducing costs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9939805 | PMC |
http://dx.doi.org/10.2147/IDR.S352307 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!