A Prognostic Signature for Colon Adenocarcinoma Patients Based on m6A-Related lncRNAs.

J Oncol

Department of Surgery Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.

Published: February 2023

N6-methyladenosine (m6A) modification is a common epigenetic modification. It is reported that lncRNA can be regulated by m6A modification. Previous studies have shown that lncRNAs associated with m6A regulation (m6A-lncRNAs) serve as ideal prognostic biomarkers. However, whether lncRNAs are involved in m6A modification in colon adenocarcinoma (COAD) needs further exploration. The objective of this study was to construct an m6A-lncRNAs-based signature for patients with COAD. We obtained the RNA sequencing data and clinical information from The Cancer Genome Atlas (TCGA). Pearson correlation analysis was employed to recognize lncRNAs associated with m6A regulation (m6A-lncRNAs). 24 prognostic m6A-lncRNAs was identified by univariate Cox regression analysis. Gene set enrichment analysis (GSAE) was used to investigate the potential cellular pathways and biological processes. We have also explored the relationship between immune infiltrate levels and m6A-lncRNAs. Then, a predictive signature based on the expression of 13 m6A-lncRNAs was constructed by the Lasso regression algorithm, including UBA6-AS1, AC139149.1, U91328.1, AC138207.5, AC025171.4, AC008760.1, ITGB1-DT, AP001619.1, AL391422.4, AC104532.2, ZEB1-AS1, AC156455.1, and AC104819.3. ROC curves and K M survival curves have shown that the risk score has a well-predictive ability. We also set up a quantitative nomogram on the basis of risk score and prognosis-related clinical characteristics. In summary, we have identified some m6A-lncRNAs that correlated with prognosis and tumor immune microenvironment in COAD. In addition, a potential alternative signature based on the expression of m6A-lncRNAs was provided for the management of COAD patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9940948PMC
http://dx.doi.org/10.1155/2023/7797710DOI Listing

Publication Analysis

Top Keywords

m6a modification
12
colon adenocarcinoma
8
lncrnas associated
8
associated m6a
8
m6a regulation
8
regulation m6a-lncrnas
8
signature based
8
based expression
8
expression m6a-lncrnas
8
risk score
8

Similar Publications

Insulin-like growth factor II mRNA-binding proteins (IGF2BPs), a family of RNA-binding proteins, are pivotal in regulating RNA dynamics, encompassing processes such as localization, metabolism, stability, and translation through the formation of ribonucleoprotein complexes. First identified in 1999 for their affinity to insulin-like growth factor II mRNA, IGF2BPs have been implicated in promoting tumor malignancy behaviors, including proliferation, metastasis, and the maintenance of stemness, which are associated with unfavorable outcomes in various cancers. Additionally, non-coding RNAs (ncRNAs), particularly long non-coding RNAs, circular RNAs, and microRNAs, play critical roles in cancer progression through intricate protein-RNA interactions.

View Article and Find Full Text PDF

m6A methylation dynamically participates in the immune response against Vibrio anguillarum in half-smooth tongue sole (Cynoglossus semilaevis).

Fish Shellfish Immunol

December 2024

Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China. Electronic address:

N6-methyladenosine (m6A) is the most prevalent RNA modification and a multifaceted regulator capable of affecting various aspects of mRNA metabolism, thereby playing important roles in numerous physiological processes. However, it is still unknown whether, when, and to what extent m6A modulation are implicated in the immune response of an economically important aquaculture fish, half-smooth tongue sole (Cynoglossus semilaevis). Herein, we systematically profiled and characterized the m6A epitranscriptome and transcriptome in C.

View Article and Find Full Text PDF

Solute transport family 7A member 7 (SLC7A7) mutations contribute to lysinuric protein intolerance (LPI), which is the mechanism of action that has been extensively studied. In colorectal cancer (CRC), SLC7A7 appears to play a role, but the features and mechanisms are not yet well understood. Survival was analyzed using the Kaplan-Meier analysis.

View Article and Find Full Text PDF

N6-methyladenosine (m6A) modification: Emerging regulators in plant-virus interactions.

Virology

December 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China. Electronic address:

N6-methyladenosine (m6A), a reversible epigenetic modification, is widely present on both cellular and viral RNAs. This modification undergoes catalysis by methyltransferases (writers), removal by demethylases (erasers), and recognition by m6A-binding proteins (readers), ultimately influencing the fate and function of modified RNA molecules. With recent advances in sequencing technologies, the genome-wide mapping of m6A has become possible, enabling a deeper exploration of its roles during viral infections.

View Article and Find Full Text PDF

Mettl3-Mediated m6A Modification is Essential for Visual Function and Retinal Photoreceptor Survival.

Invest Ophthalmol Vis Sci

December 2024

The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

Purpose: N6-methyladenosine (m6A) modification, one of the most common epigenetic modifications in eukaryotic mRNA, has been shown to play a role in the development and function of the mammalian nervous system by regulating the biological fate of mRNA. METTL3, the catalytically active component of the m6A methyltransferase complex, has been shown to be essential in development of in the retina. However, its role in the mature retina remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!