Varieties of Mobility Measures: Comparing Survey and Mobile Phone Data during the COVID-19 Pandemic.

Public Opin Q

PhD Candidate, Complexity Science Hub Vienna, Vienna, Austria, and Institute of Information Systems Engineering, Technical University Wien, Vienna, Austria.

Published: December 2022

Human mobility has become a major variable of interest during the COVID-19 pandemic and central to policy decisions all around the world. To measure individual mobility, research relies on a variety of indicators that commonly stem from two main data sources: survey self-reports and behavioral mobility data from mobile phones. However, little is known about how mobility from survey self-reports relates to popular mobility estimates using data from the Global System for Mobile Communications (GSM) and the Global Positioning System (GPS). Spanning March 2020 until April 2021, this study compares self-reported mobility from a panel survey in Austria to aggregated mobility estimates utilizing (1) GSM data and (2) Google's GPS-based Community Mobility Reports. Our analyses show that correlations in mobility changes over time are high, both in general and when comparing subgroups by age, gender, and mobility category. However, while these trends are similar, the size of relative mobility changes over time differs substantially between different mobility estimates. Overall, while our findings suggest that these mobility estimates manage to capture similar latent variables, especially when focusing on changes in mobility over time, researchers should be aware of the specific form of mobility different data sources capture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9940778PMC
http://dx.doi.org/10.1093/poq/nfac042DOI Listing

Publication Analysis

Top Keywords

mobility estimates
16
mobility
15
covid-19 pandemic
8
data sources
8
survey self-reports
8
mobility data
8
mobility changes
8
changes time
8
data
6
varieties mobility
4

Similar Publications

Initial Pose Estimation Method for Robust LiDAR-Inertial Calibration and Mapping.

Sensors (Basel)

December 2024

Department of Intelligent Systems & Robotics, Chungbuk National University, Cheongju 28644, Republic of Korea.

Handheld LiDAR scanners, which typically consist of a LiDAR sensor, Inertial Measurement Unit, and processor, enable data capture while moving, offering flexibility for various applications, including indoor and outdoor 3D mapping in fields such as architecture and civil engineering. Unlike fixed LiDAR systems, handheld devices allow data collection from different angles, but this mobility introduces challenges in data quality, particularly when initial calibration between sensors is not precise. Accurate LiDAR-IMU calibration, essential for mapping accuracy in Simultaneous Localization and Mapping applications, involves precise alignment of the sensors' extrinsic parameters.

View Article and Find Full Text PDF

Human Pose Estimation (HPE) is a computer vision application that utilizes deep learning techniques to precisely locate Key Joint Points (KJPs), enabling the accurate description of a person's pose. HPE models can be extended to facilitate Range of Motion (ROM) assessment by leveraging patient photographs. This study aims to evaluate and compare the performance of HPE models for assessing upper limbs ROM.

View Article and Find Full Text PDF

Nuclear power plant decommissioning requires the rapid and accurate classification of radioactive waste in narrow spaces and under time constraints. Photon-counting detector technology offers an effective solution for the quick classification and detection of radioactive hotspots in a decommissioning environment. This paper characterizes a 5 mm CdTe Timepix3 detector and evaluates its feasibility as a single-layer Compton camera.

View Article and Find Full Text PDF

The fusion of multiple sensors' data in real-time is a crucial process for autonomous and assisted driving, where high-level controllers need classification of objects in the surroundings and estimation of relative positions. This paper presents an open-source framework to estimate the distance between a vehicle equipped with sensors and different road objects on its path using the fusion of data from cameras, radars, and LiDARs. The target application is an Advanced Driving Assistance System (ADAS) that benefits from the integration of the sensors' attributes to plan the vehicle's speed according to real-time road occupation and distance from obstacles.

View Article and Find Full Text PDF

The continuous, automated monitoring of sensor-based data for walking capacity and mobility has expanded gait analysis applications beyond controlled laboratory settings to real-world, everyday environments facilitated by the development of portable, cost-efficient wearable sensors. In particular, the integration of Inertial Measurement Units (IMUs) into smart shoes has proven effective for capturing detailed foot movements and spatiotemporal gait characteristics. While IMUs enable accurate foot trajectory estimation through the double integration of acceleration data, challenges such as drift errors necessitate robust correction techniques to ensure reliable performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!