Anlotinib is an oral multi-targeted tyrosine kinase inhibitor as a third-line and subsequent treatment for patients with small cell lung cancer (SCLC) in China. The neurotoxicity is less reported. Posterior reversible encephalopathy syndrome (PRES) is characterized by headaches, seizures, encephalopathy, and visual disturbances, as well as focal reversible vasogenic edema seen on neuroimages. Here, we presented a case of PRES in a small cell lung cancer (SCLC) patient associated with anlotinib. A 37-year-old female patient, who had a history of diabetes, with extensive-stage SCLC received anlotinib after third-line chemotherapy. Ten cycles of anlotinib later, the patient experienced visual disturbance and was diagnosed with PRES based on the typical demyelination of white matter obtained in the brain magnetic resonance. During anlotinib therapy, the patient did not develop anti-VEGF therapy-induced hypertension. Subsequently, the patient stopped anlotinib, but she did not recover from symptoms. We also summarized the characteristics of fifty-four cases of PRES caused by antiangiogenic drugs in the literature. Based on our experience and the literature review, the incidence of PRES induced by antiangiogenic drugs is low, and the symptom can resolve upon stopping the medications. However, some cases still have a poor prognosis and the underlying mechanism requires further investigation. In addition, early detection and treatment of PRES are essential for physicians.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9939648PMC
http://dx.doi.org/10.3389/fphar.2023.1126235DOI Listing

Publication Analysis

Top Keywords

small cell
12
cell lung
12
lung cancer
12
posterior reversible
8
reversible encephalopathy
8
encephalopathy syndrome
8
literature review
8
cancer sclc
8
antiangiogenic drugs
8
anlotinib
7

Similar Publications

Impacts of lateral conductive heat flow on ground temperature and implications for permafrost modeling.

Sci Rep

December 2024

Canada Centre for Remote Sensing, Canada Centre for Mapping and Earth Observation, Natural Resources Canada, 580 Booth Street, Ottawa, ON, K1A 0E4, Canada.

Permafrost ground temperature and its spatial distribution are usually calculated using one-dimensional models based on heat flow in the vertical direction. Here, we theoretically calculated the impacts of lateral conductive heat flow on ground temperature under equilibrium and transient conditions. The results show that lateral heat flow has strong impacts on ground temperature, especially in deep ground.

View Article and Find Full Text PDF

Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis.

View Article and Find Full Text PDF

Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.

View Article and Find Full Text PDF

Conjugative plasmids promote the dissemination and evolution of antimicrobial resistance in bacterial pathogens. However, plasmid acquisition can produce physiological alterations in the bacterial host, leading to potential fitness costs that determine the clinical success of bacteria-plasmid associations. In this study, we use a transcriptomic approach to characterize the interactions between a globally disseminated carbapenem resistance plasmid, pOXA-48, and a diverse collection of multidrug resistant (MDR) enterobacteria.

View Article and Find Full Text PDF

Quantifying the regulatory potential of genetic variants via a hybrid sequence-oriented model with SVEN.

Nat Commun

December 2024

State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, 100871, Beijing, China.

Deciphering how noncoding DNA determines gene expression is critical for decoding the functional genome. Understanding the transcription effects of noncoding genetic variants are still major unsolved problems, which is critical for downstream applications in human genetics and precision medicine. Here, we integrate regulatory-specific neural networks and tissue-specific gradient-boosting trees to build SVEN: a hybrid sequence-oriented architecture that can accurately predict tissue-specific gene expression level and quantify the tissue-specific transcriptomic impacts of structural variants across more than 350 tissues and cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!