Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Guided bone regeneration (GBR) is widely used in treating oral bone defects to exclude the influence of non-osteogenic tissue on the bone healing process. The traditional method of GBR with a titanium mesh to treat large-area bone defects is limited by the deficiency of increased trauma and costs to patients. Herein, a bi-layered scaffold for GBR composed of a fiber barrier layer and a self-healing hydrogel repair layer is successfully fabricated. The barrier layer is a fibrous membrane material with specific porosity constructed by electrospinning, while the functional layer is a self-healing hydrogel material formed by multiple dynamic covalent bonds. The system can provide an osteogenic microenvironment by preventing the infiltration of connective tissue to bone defects, maintain the stability of the osteogenic space through the self-healing property, and regulate the release of bioactive substances in the dynamic physical condition, which is beneficial to osteoblast proliferation, differentiation, and bone regeneration. This study focused on exploring the effects of different crosslinkers and bonding methods on the comprehensive properties of hydrogels. and proved that the hybrid scaffold system has good biocompatibility, cell barrier function and can enhance bone regeneration activity. Thereby it could be a promising clinical strategy for bone regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9948527 | PMC |
http://dx.doi.org/10.1186/s12951-023-01811-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!